
IMPLEMENTATION OF INTERCONNECTIVE SYSTEMS

Thomas A. Baran Tarek A. Lahlou

Digital Signal Processing Group
Massachusetts Institute of Technology

ABSTRACT

This paper proposes a systematic strategy for the automated imple-
mentation of mixed constraint- and input-output-based representa-
tions of signal processing systems. Examples of the strategy are
provided in synthesizing algorithms derived from signal-flow graphs
having delay-free loops, as well as in performing automated system
inversion. An algorithm that follows the strategy, and which has been
deployed online as part of an edX course, is discussed in greater fo-
cus. Sensitivity analysis of systems designed using the algorithm is
provided.

Index Terms— Algorithm synthesis, behavioral systems theory,
inverse systems, signal-flow graphs, computer aided instruction

1. INTRODUCTION

The language used in describing various signal processing systems,
e.g. linear and nonlinear signal-flow graphs, may be interpreted as
a blend of constraint-based and input-output terminology. For ex-
ample, in signal-flow graphs for allpass-warped filter structures [1],
certain of the elements, such as delays, have a well-specified input-
output form, while other of the elements readily form delay-free
loops which implicitly represent algebraic constraints.

Techniques for the automated implementation of signal pro-
cessing systems have traditionally focused, however, on scheduling
input-output-based computations to form an overall system imple-
mentation, e.g. using callback functions in a “data pull” arrangement
or using the techniques described in [2][3]. In certain cases where
computation cannot be arranged to form an implementation, al-
ternative techniques identifying various special cases, such as the
identification and breaking of delay-free loops, have been used [4].

This paper proposes a systematic strategy for the automated im-
plementation of mixed constraint- and input-output-based represen-
tations of signal processing systems, specifically making use of the
so-called interconnective representation discussed in [5][6]. We pro-
vide examples of the strategy in synthesizing algorithms derived
from signal-flow graphs having delay-free loops, as well as in per-
forming automated system inversion. A specific algorithm follow-
ing this strategy that has been used for automated grading on an edX
course [7] is discussed, and sensitivity analysis is provided.

2. SYSTEM REPRESENTATION

The presented class of implementation techniques apply to systems
that may be described using a variety of system representations, in-
cluding e.g., block diagrams and signal-flow graphs. For consistency

The authors wish to thank Analog Devices, Bose Corporation, and Texas
Instruments for their support of innovative research at MIT and within the
Digital Signal Processing Group.

we formulate the techniques in this paper using the language out-
lined in this section, which can be readily used to describe systems
represented in a variety of alternative forms.

2.1. The behavioral approach

In this paper we take the behavioral approach described in [8] in rep-
resenting signal processing systems, and in particular in representing
systems that are specified as an interconnection of subsystems. The
goal in doing this is to facilitate the translation between constraint-
based system representations, which may often be used in formulat-
ing an initial system description, and input-output representations,
which would form the basis for synthesizing an implementation. In
the following subsections we outline the key elements of the behav-
ioral approach referred to in this paper.

2.1.1. Definition of behavior

Given a signal processing system or subsystem having one or more
external signal- or scalar-valued variables available for interconnec-
tion with other systems or subsystems, we refer to the external vari-
ables as “terminal variables.” It is customary to arrange these vari-
ables into a column vector referred to as a “terminal vector,” and we
will refer to the entire set of possible values of the terminal vector
consistent with constraints imposed by a particular system as “the
behavior” of the system [8]. With this definition, it is generally pos-
sible that there is no explicit indication about whether a given termi-
nal variable is a system input or output.

Written formally, for a particular system R having a total of N
terminal variables denoted x1, . . . , xN , we write the terminal vector
as x = [x1, . . . , xN ]T . The behavior ofR, denoted SR, is written as

SR = {x : x is consistent with the constraints imposed byR} , (1)

i.e. SR can be obtained by beginning with the set that is equivalent to
the domain over which the terminal vector for R is defined, and tak-
ing the subset consisting of those terminal vectors that are permitted
by R.

2.1.2. The behavior of an interconnection of systems

The interconnection of two systems results in a sharing of the val-
ues of their terminal variables, and consequently those values are
subject to the constraints of both. From the behavioral viewpoint,
we formalize this by saying that an interconnection of two systems
corresponds to the intersection of their behaviors imposed by those
variables that are shared. For example given two systems denoted P
andR having dimensionally-compatible terminal vectors and having
respective behaviors written SP and SR, the sharing of their termi-
nal vectors results in an interconnected system PR whose behavior
is written SPR = SP ∩ SR.



2.1.3. The behavior of a map

The behavior of a system represented as a map is obtained by form-
ing a terminal vector from its input and output variables, and deter-
mining the set of all such vectors that result by applying the map
to all elements in the domain over which it is defined. We formally
write the definition for the behavior of a generally nonlinear and
time-varying map M , coupling an input signal c[n] ∈ C to an output
signal d[n] ∈ D, as

SM =

{[
c[n]

M(c[n])

]
: c[n] ∈ C

}
. (2)

With the definition in Eq. 2 we have for simplicity ordered inputs
before outputs in the terminal vector, and alternative orderings may
also generally be used. In particular as was discussed in [5][6], an in-
vertible map is behaviorally-equivalent to its inverse when the input
and output terminal variables are appropriately exchanged.

Referring to Eq. 2, ifM is a linear map realized as multiplication
by a matrix G, and if C is a vector space, then we can write

SG =

{[
c
Gc

]
: c ∈ C

}
. (3)

We conclude from Eq. 3 that the behavior associated with a linear
map is a vector space.

2.1.4. The behavior of an interconnection of linear, memoryless
maps

An interconnection of linear, memoryless maps is a vector space.
This follows from the previous discussion, in particular from the
point that an interconnection of systems corresponds to an intersec-
tion of behaviors, that the behavior of a linear map is a vector space,
and that in general an intersection of vector spaces is itself a vector
space.

2.2. Interconnective system representation

Critical to the class of implementation methods discussed in this pa-
per is the form of system representation referred to in [5][6], which
is specifically referred to as “interconnective.” The goal in using
an interconnective representation is to facilitate the separation of the
behaviors of the subsystems in an overall system from the relation-
ships that couple them together, in particular so that the techniques
discussed in this paper can directly utilize these coupling relation-
ships.

In particular in interconnective form, a system is viewed as hav-
ing two parts: constitutive relations (CRs), e.g. a set of possibly non-
linear and time-varying subsystems that are allowed to have memory,
and a memoryless, linear interconnecting system (LI) to which the
subsystems and overall system input and output are connected.

3. GENERAL IMPLEMENTATION STRATEGY

The general strategy for implementation pertains to a system rep-
resented in interconnective form, which for example can be readily
obtained from a signal-flow representation by appropriately labeling
sub-elements as either being CRs or as being part of the LI. We as-
sume that given any input-output configuration for which the CRs are
known to be computable, we have access to functions for computing
them. I.e. given a CR represented as an invertible map coupling two
variables, it is generally possible that a forward function and and
inverse function would be available.

The following steps summarize the general strategy for obtain-
ing an implementation from a system represented as mentioned in an
interconnective form:

1. Determine the behavior of the LI, which will be a finite-
dimensional vector space.

2. Select an input-output configuration for the LI that allows
for individual computability of the CRs, as well as for com-
putability of the LI.

3. Given the input-output configuration selected in the previous
step, determine a linear map having the behavior of the LI.

4. Determine an order of computation for the CRs that will be
used to schedule how the CRs pass data through the LI. If no
such order can be found, return to Step 2 and select a different
input-output configuration.

We comment upfront that by following this sequence, any system for
which an implementation would have been found using [2][3] would
also have an implementation found using this strategy.

Examples illustrating the use of this strategy are depicted in
Figs. 1-2. Fig. 1 in particular depicts its use in realizing a recur-
sive system involving allpass elements, e.g. as may be desired with
the applications identified in [1]. Fig. 1 also indicates the effec-
tiveness of the strategy in synthesizing computable implementations
from signal-flow representations having delay-free loops, and in this
sense represents an automated way to obtain a solution to the class of
problems discussed in, e.g. [4]. Fig. 2 depicts the use of the general
strategy in obtaining two behaviorally-equivalent implementations
for the nonlinear system discussed in [5][9], indicating the structure
of its implementation both as a forward and an inverse map. The gen-
eral strategy may thereby be viewed as a blueprint for the automated
inversion of systems traditionally performed using graph-based tech-
niques, e.g. [10][11][5].

4. EXAMPLE ALGORITHM

In this section we discuss an example algorithm adhering to the gen-
eral implementation strategy described in Section 3 by introducing a
“constraint form” encoding of the LI in order to describe the behav-
ior of the LI as a finite-dimensional vector space. A matrix whose
behavior equals the behavior of the LI is then generated from this
representation. We then discuss a method by which a precedence
map or scheduling of the linear constraints and CRs is determined as
well as a method for determining clock domains compatible with a
synchronous implementation of any multirate relations. In generat-
ing the ordered sequence of functions, we rely upon the availability
of an input-output configuration of the system described in intercon-
nective form such that all CRs have functional realizations.

4.1. Determining the behavior of the LI

Define a behavior-generating matrix B for a fixed LI with behavior
SLI such that the nullspace of B consists of all terminal vectors
consistent with the linear, time-invariant and memoryless constraints
of the signal-flow system, i.e.,

Bx = 0, ∀x ∈ SLI . (4)

A behavior-generating martrix B satisfying Eq. 4 can be populated
using the following straightforward procedure: for each constraint
in the LI, encode one or multiple rows of B where the coefficients
for the row(s) correspond to the coefficients of the constraint written
in constraint form, i.e., as a homogeneous linear equation. Figure 3



Fig. 1. Example illustrating the presented general strategy for obtaining system implementations, shown for a second-order all-pole system
in direct form, with the delays having been replaced by first-order allpass elements. (a) Original system, containing delay-free loops. (b)
System represented in interconnective form. (c) System indicating the computed behavior of the LI, computed for a system where a1 = −1
a2 = 0.5, and α = 0.5. (d) Computable system involving a matrix G having the behavior of the LI depicted in (c).

Fig. 2. Example illustrating the use of the presented automated strat-
egy in obtaining two behaviorally-equivalent implementations of an
original system (a), with (b) representing its implementation as a for-
ward map and (c) representing its implementation as an inverse map.

depicts three example signal-flow elements along with their corre-
sponding constraint form equations. Then, by definition we have
that null {B} = SLI .

4.2. Realizing LI as a matrix

For a given behavior-generating matrix B, we next define a related
matrix X which satisfies the following two properties: (i) the range
of X is equal to the behavior of the LI, and (ii) the rows of X are or-
dered such that a partitioning yields an upper block X1 correspond-
ing to the Ni input variables and a lower block X2 corresponding to
the No output variables as described by the input-output configura-
tion. The matrix X may be assembled by permuting the rows of the
singular vectors of B corresponding to zero singular values.

An important question at this stage deals with the existance of
a realization of the LI for the given input-output configuration as a
matrix. Consider the description of the behavior of the LI, i.e. SLI ,

Fig. 3. Example signal-flow elements and constraint form equations
for (a) a summation node, (b) a distribute node, and (c) a constant-
coefficient multiplier.

written in terms of X1 and X2 as

SLI = range
{[

X1

X2

]}
. (5)

It is straightforward to show from this equation that for the realiza-
tion of the LI as a matrixG to exist it is both necessary and sufficient
for the associated block matrix X1 to be invertible. It then immedi-
ately follows that when the realization exists it is given by

G = X2X
−1
1 . (6)

4.3. Determining precedence relations

The issue of computability for a signal-flow system in this paper is
closely associated with the existance of delay free loops within the
system. In Section 4.2 we realized the behavior of the LI as a matrix,
i.e. with no such loops, thus a sufficient condition for scheduling of
the total system is the absence of delay free loops from the CRs
[2][3]. A procedure for identifying a precedence map or schedule
for executing the linear constraints, i.e., rows of G, and constitutive
relations is now described.

We next make use of the input-output configuration in defining a
sequence of precedence vectors p(`) where each output or end-loop
variable is represented by a coordiante of p(`), i.e., p(`) has a dimen-
sionality equal to the number of CR inputs and overall system out-
puts. The term end-loop variable is suggestive of the fact that these
variables are needed to proceed to the next iteration of the runloop
under design. Let D(LI) and D(CR) respectively denote binary de-
pendency matrices where D(LI) = 1 for non-zero entries of G and
D(CR) similarly encodes which linear interconnection outputs are
needed for the computation of each CR and overall system output.
The sequence of precedence vectors are then populated by iterating

p(`) =
(
D(LI)D(CR)

)T

p(`−1), l = 1, . . . , L (7)



Fig. 5. An illustration of the numerical sensitivity of the LI matrix G for the second-order allpass warped system in Figure 1 computed as the
log of the modified condition number for allpass parameters α = 0,± 1

3
,± 2

3
. For each allpass parameter, G is generated and analyzed for all

complex conjugate pole pairs located within the unit circle of the z-plane.

Fig. 4. User interface for an example problem on the edX course [7]
utilizing the algorithm in Section 4 in evaluating student input.

where p(0) is initialized to 1 for each overall system output and L
is the degree of the nilpotent matrix D(LI)D(CR). The runloop is
populated in reverse by ordering the CRs and preceeding them with
the necessary linear equations or rows of G such that the functional
dependencies of the CRs are satisfied. The final ordering of the CRs
corresponds to the end-loop variable coordinates first non-zero value
appearing in p(`) for increasing `.

4.4. Computing clock domains

In computing clock domains, we associate with each interconnection
terminal variable xk a clock rate rk. Then, collect a constraint for
each xi, xj described by the dependency matricesD(LI) andD(CR)

written as rir
−1
j = µ (8)

where µ > 0 describes the rate relationship between xi and xj , i.e.
xi operates at µ times the rate of xj . Rewriting this set of constraints
with r̂k = log rk yields a system of linear equations of the form

r̂i − r̂j = log µ (9)

where any non-trivial solution uniquely specifies a choice of rates rk.
Conditions for the existance of a synchronous implementation of the

signal-flow system is then twofold. First, the right hand side of Eq. 9
must lie in the range of the associated system. This is equivalent to
having no contradictory constraints, e.g., a delay free loop through
an expander. Second, all rates must be rational, i.e. each element rk
may be made integer by proper normalization. When a system con-
sists soley of integer rate conversion elements, e.g., decimators and
expanders, the second condition will always be satisfied. The rates
obtained are then used to keep track of which iterations particular
functions are executed on.

4.5. Online implementation

The algorithm described in this section has been implemented in
Python and integrated with the online grading system for the edX
course, 6.341x: Discrete-Time Signal Processing [7]. A screen cap-
ture of the user interface for an example problem utilizing the al-
gorithm for student evaluation is depicted in Fig. 4. Referring to
this figure, the student has been prompted to design a polyphase im-
plementation for a rate-conversion system, and the algorithm in this
section has been used to provide feedback to the student that the
particular system entered did not exhibit the expected input-output
relationship, obtained by applying test signals to the resulting run-
loop implementation. Still referring to Fig. 4, the grading system has
additionally provided feedback about the computational cost of the
system, computed using the principles discussed in Subsection 4.4.

5. SENSITIVITY ANALYSIS

In traditional representations of signal processing systems, i.e. linear
and nonlinear signal-flow graphs, finite-precision effects such as co-
efficient quantizaion are typically evaluated using various sensitivity
theorems and are discussed, e.g. in [12]. A canonical tool which
measures perturbation sensitivity of linear systems with respect to a
number of perturbation sources is the relative condition number, i.e.,
the ratio of extremal singular values [13]. In this paper we use a mod-
ified condition number taken as ratio of largest to smallest non-zero
singular values. A justification for this modification follows from
the fact that the number of inputs and outputs to the LI are generally
not equal.

For a given signal-flow system, understanding sensitivity is
straightforwad when no delay free loops are present and less so in
the general case. Consider the previous example of all-pass filter
composition from Fig. 1. A well known design strategy in this con-
text selects an allpass factor α in order to place the pole locations
of the composed filter in a region of the z-plane with desireable
sensitivity properties. Consistent with these results, Figure 5 depicts
the log of the modified condition number of the LI matrix G assum-
ing the poles are chosen in complex conjugate pairs within the unit
circle for several values of α. The optimal regions of the z-plane
for a fixed allpass factor using this metric is consistent with those
expected from conformal mapping theory [1].



6. REFERENCES

[1] P.A Regalia, S.K. Mitra, and P.P. Vaidyanathan, “The digi-
tal all-pass filter: a versatile signal processing building block,”
Proceedings of the IEEE, vol. 76, no. 1, pp. 19–37, Jan 1988.

[2] R. E. Crochiere, Digital network theory and its application to
the analysis and design of digital filters, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 1974.

[3] R. E. Crochiere and A. V. Oppenheim, “Analysis of linear dig-
ital networks,” Proceedings of the IEEE, vol. 63, no. 4, pp.
581–595, 1975.

[4] A. Härmä, “Implementation of recursive filters having delay
free loops,” in IEEE Proc. Int. Conf. Acoust., Speech and Sig-
nal Process., 1998, pp. 1261–1264.

[5] T. A. Baran and A. V. Oppenheim, “Inversion of nonlinear and
time-varying systems,” in 2011 IEEE Digital Signal Process-
ing Workshop and IEEE Signal Processing Education Work-
shop (DSP/SPE). IEEE, 2011, pp. 283–288.

[6] T. A. Baran, Conservation in Signal Processing Systems, Ph.D.
thesis, Massachusetts Institute of Technology, 2012.

[7] A. V. Oppenheim and T. A. Baran, 6.341x Discrete-Time Signal
Processing, on edX, Spring 2015.

[8] J. C. Willems, “The behavioral approach to open and intercon-
nected systems,” IEEE Control Systems Magazine, vol. 27, no.
6, pp. 46–99, 2007.

[9] A. Carini, G.L. Sicuranza, and V.J. Mathews, “On the inversion
of certain nonlinear systems,” IEEE Signal Processing Letters,
vol. 4, no. 12, pp. 334–336, 1997.

[10] S. Y. Kung, “Inverse systems and an inversion rule,” in De-
cision and Control including the 16th Symposium on Adaptive
Processes and A Special Symposium on Fuzzy Set Theory and
Applications, 1977 IEEE Conference on, Dec 1977, pp. 771–
776.

[11] S. J. Mason and H. J. Zimmerman, Electronic Circuits, Signals,
and Systems, Wiley, 1960.

[12] A. V. Oppenheim and R. W. Schafer, Digital Signal Process-
ing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1975.

[13] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM:
Society for Industrial and Applied Mathematics, June 1997.


