Signal Processing Structures For Optimization

Dr. Thomas A. Baran

Digital Signal Processing Group Research Laboratory of Electronics Massachusetts Institute of Technology November 19, 2014

Signal processing structures

$$f^{(0)}[n] = r_{ss}[n]$$

$$g^{(0)}[n] = r_{ss}[n-1]$$
for $i = 1, 2, ..., p$

$$k_i = \frac{f^{(i-1)}[i]}{g^{(i-1)}[i]}$$

$$f^{(i)}[n] = f^{(i-1)}[n] - k_i g^{(i-1)}[n]$$

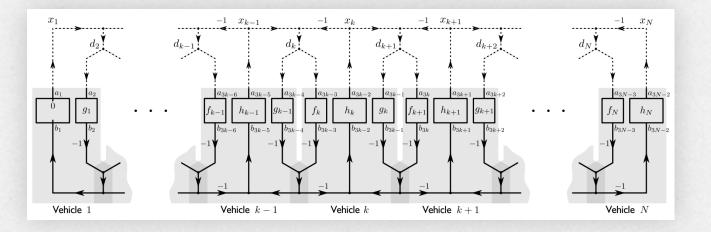
$$g^{(i)}[n] = g^{(i-1)}[n-1] - k_i f^{(i-1)}[n-1]$$
end

$$r_{ss}[n] \longrightarrow A^{(p)}(z) \xrightarrow{f^{(p)}[n]} f^{(p+1)}[n]$$

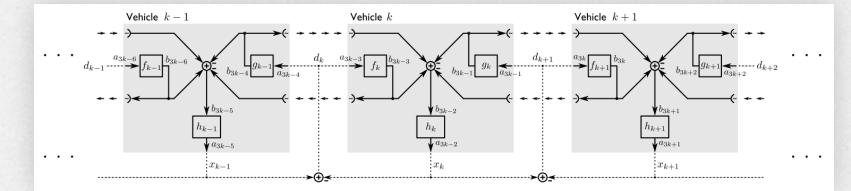
$$-k_{p+1} \xrightarrow{-k_{p+1}} g^{(p+1)}[n]$$

f(p)[n]

Г


Given
$$k_1, k_2, \dots, k_p$$

for $i = 1, 2, \dots, p$
 $\alpha_i^{(i)} = k_i$
if $i > 1$ then for $j = 1, 2, \dots, i - 1$
 $\alpha_j^{(j)} = \alpha_j^{(i-1)} - k_i \alpha_{i-j}^{(i-1)}$
end
end


$$k_{p+1} = \frac{f^{(p)}[p+1]}{g^{(p)}[p+1]}.$$

From: T. A. Baran and A. V. Oppenheim, "A Derivation of the Recursive Solution to the Autocorrelation Normal Equations [Lecture Notes]," *IEEE Signal Processing Magazine*, January 2013.

VS.

Signal processing structures

From: T. A. Baran and B. K. P. Horn, "A Robust Signal-Flow Architecture for Cooperative Vehicle Density Control," in Proceedings of the IEEE ICASSP (Vancouver, British Columbia, Canada), May 26 - May 31, 2013.

Signal processing structures

RANDOMIZED SINC INTERPOLATION OF NONUNIFORM SAMPLES

Shay Maymon, Alan V. Oppenheim

Massachusetts Institute of Technology Digital Signal Processing Group 77 Massachusetts Avenue, Cambridge MA 02139 maymon@mit.edu, avo@mit.edu

Digital Pulse Processing

by

Martin McCormick

hampaign (2010)

g and Computer Science or the degree of

ARCHIVES MASSACHUSETTS INSTITUTE OF TECHNOLOGY

OCT 2 4 2012

UPC: RIES

and Computer Science

TECHNOLOGY

ABSTRACT

It is well known that a bandlimited signal can be uniquely determined from nonuniformly spaced samples, provided that the average sampling rate exceeds the Nyquist rate. However, reconstruction of the continuous-time signal from nonuniform samples is more difficult than from uniform samples. This paper develops and compares simpler approximate methods for signal reconstruction from nonuniform samples.

1. INTRODUCTION

The most common form of sampling used in the context of discrete-time processing of continuous-time signals is uniform sampling. For a bandwidth-limited signal x(t) whose Fourier spectrum contains no component at or above the frequency Ω_c the well-known Nyquist-Shannon sampling theorem states that the signal is uniquely determined by its values at an infinite set of sample points spaced at $T_N = \pi/\Omega_c$ apart. Specifically, x(t) is represented in terms of its uniform samples as

$$x(t) = \sum_{k=-\infty}^{\infty} x(kT_N) \cdot h(t - kT_N)$$
(1)

Randomized Sampling and Multiplier-Less Filtering

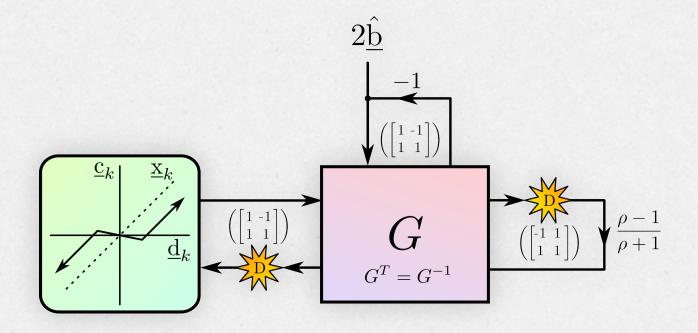
by

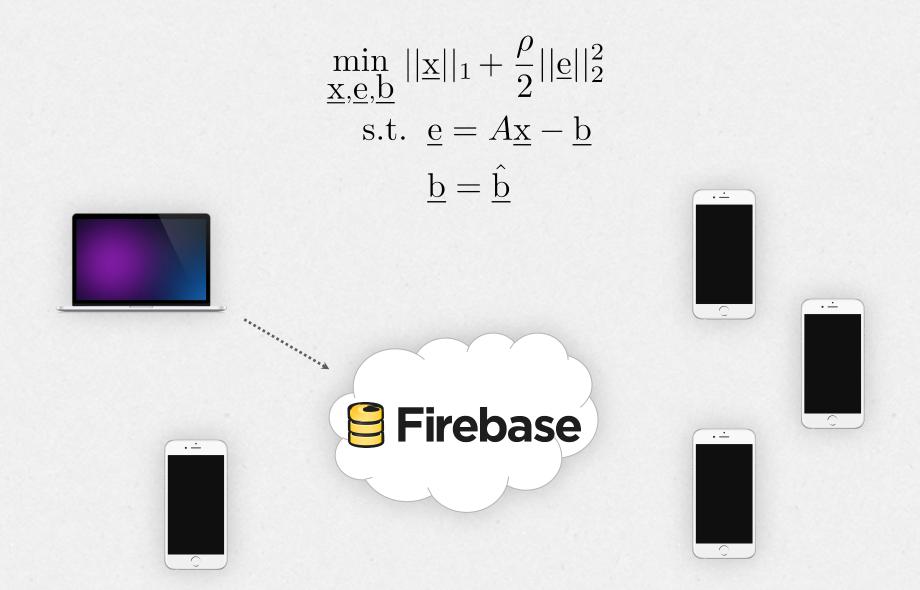
Sourav R. Dey

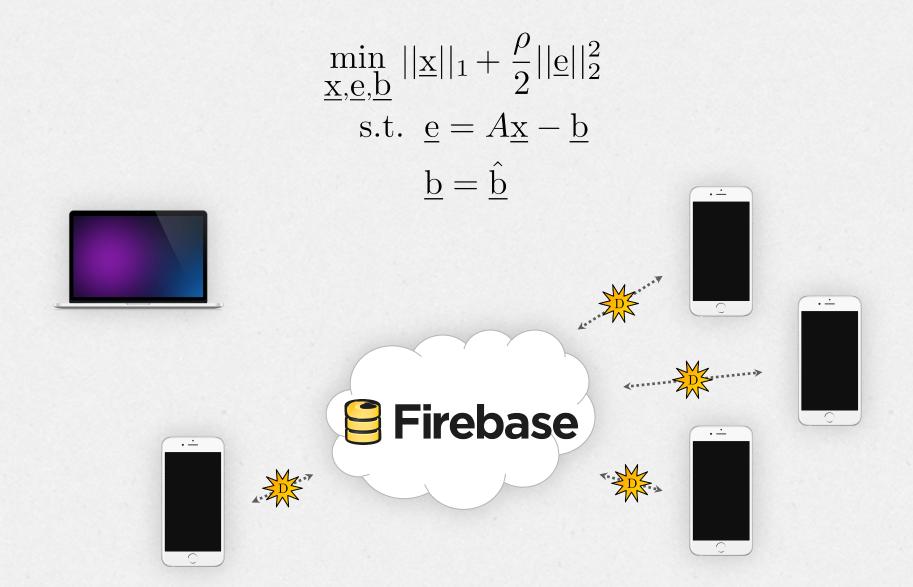
Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

at the


MASSACHUSETTS INSTITUTE OF TECHNOLOGY


February 2008


@ Massachusetts Institute of Technology 2008 All rights reserved

$$\min_{\underline{\mathbf{x}},\underline{\mathbf{e}},\underline{\mathbf{b}}} ||\underline{\mathbf{x}}||_1 + \frac{\rho}{2} ||\underline{\mathbf{e}}||_2^2$$
s.t. $\underline{\mathbf{e}} = A\underline{\mathbf{x}} - \underline{\mathbf{b}}$
 $\underline{\mathbf{b}} = \underline{\hat{\mathbf{b}}}$

 $\min_{\underline{\mathbf{x}},\underline{\mathbf{e}},\underline{\mathbf{b}}} ||\underline{\mathbf{x}}||_1 + \frac{\rho}{2} ||\underline{\mathbf{e}}||_2^2$ s.t. $\underline{\mathbf{e}} = A\underline{\mathbf{x}} - \underline{\mathbf{b}}$ $\underline{\mathbf{b}} = \underline{\hat{\mathbf{b}}}$

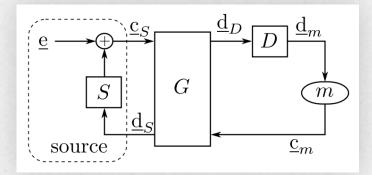
Symbol	Reduced-form primal components	Reduced-form dual components	Behavior (canonical coordinates)	Transformation matrix	Realization as a map
$\begin{array}{c} \hline Q_k \\ \hline \rho \\ \hline R_k \\ \hline \rho \\ \hline \rho \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} c \\ (M) \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \\ \hline \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \\ \hline \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \hline \end{array} \\ \begin{array}{c} c \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} c \\ \end{array} \\ \begin{array}{c} c \\ \end{array} \\$	$\widehat{Q}_{k}\left(a ight)=0$	$\widehat{R}_{k}\left(b\right)=\rho b$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = -d + 2\rho$
	$a = \rho$	$b\in\mathbb{R}$		$M_k^{(CR)} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$	$c = d - 2\rho$
$ \begin{array}{c} Q_k \\ \hline \rho + a \\ \hline R_k \\ \hline \rho + b \end{array} \begin{array}{c} c \\ (M) \\ \hline d \end{array} \text{or} \begin{array}{c} Q_k \\ \hline \rho + a \\ \hline \rho + a \end{array} \begin{array}{c} (M) \\ \hline d \end{array} \\ \hline \end{array} $	$\widehat{Q}_{k}\left(a\right) = \rho a$	$\widehat{R}_{k}\left(b\right)=0$	$\downarrow \rho \rightarrow$	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c=d-2\rho$
	$a \in \mathbb{R}$	$b = \rho$		$M_k^{(CR)} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$	$c = -d + 2\rho$
$ \begin{array}{c} $	Where we	$c = \left\{ \begin{array}{ll} d+2, & d<-1 \\ -d, & d \leq 1 \\ d-2, & d>1 \end{array} \right.$			
R_k	• • $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$	$c = \begin{cases} -d-2, & d < -1 \\ d, & d \le 1 \\ -d+2, & d > 1 \end{cases}$			
$\begin{array}{c c} Q_k \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \\ \hline$	$\left[\begin{array}{rrr}1 & -1\\1 & 1\end{array}\right]$	$c = \left\{ \begin{array}{ll} \frac{1-\rho}{1+\rho}d, & d \leq \frac{1}{\rho}+1 \\ d-2, & d > \frac{1}{\rho}+1 \\ d+2, & d < -\frac{1}{\rho}-1 \end{array} \right.$			
$ \begin{array}{c} R_k \\ \hline \\ -1 \\ \hline \\ \hline \\ (\frac{1}{\rho}) \end{array} \end{array} \begin{array}{c} (m) \\ \hline \\ $	$ \begin{cases} \varphi_{\mathcal{K}}(\alpha) &= \\ \frac{1}{2}\rho a^2 + \frac{1}{2\rho} & a < \frac{1}{\rho} \\ a \in \mathbb{R} \end{cases} $	$-1 \le b \le 1$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{\rho - 1}{\rho + 1} d, & d \le \frac{1}{\rho} + 1 \\ -d + 2, & d > \frac{1}{\rho} + 1 \\ -d - 2, & d < -\frac{1}{\rho} - 1 \end{cases}$
$(\begin{array}{c} Q_{k} (\rho_{+}) \\ (\rho_{-}) & a \\ (M) \\ (\frac{1}{\rho_{-}}) & (\frac{1}{\rho_{+}}) \\ (\frac{1}{\rho_{-}}) & b \end{array}) (M) \text{or} (\begin{array}{c} Q_{k} (\rho_{+}) \\ (\rho_{-}) & a \\ (M) \\ (M)$	$\widehat{Q}_{k}\left(a\right) = \begin{cases} \frac{1}{2}\rho_{+}a^{2} & a \ge 0\\ \frac{1}{2}\rho_{-}a^{2} & a < 0 \end{cases}$	$\widehat{R}_{k}\left(b\right) = \begin{cases} \frac{1}{2} \frac{1}{\rho_{+}} b^{2} & b \ge 0\\ \frac{1}{2} \frac{1}{\rho_{-}} b^{2} & b < 0 \end{cases}$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{1-\rho_+}{1+\rho_+}d, & d \ge 0\\ \frac{1-\rho}{1+\rho}d, & d < 0 \end{cases}$
	$a \in \mathbb{R}$	$b \in \mathbb{R}$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{\rho_{+}-1}{\rho_{+}+1}d, & d \ge 0\\ \frac{\rho_{-}-1}{\rho_{-}+1}d, & d < 0 \end{cases}$
$ \begin{array}{c} Q_k \\ \hline Q_k \\ \hline R_k \\ \hline d \\ \hline d \\ \hline \end{array} \text{or} \begin{array}{c} Q_k \\ \hline Q_k \\ \hline M \\ \hline d \\ \hline d \\ \hline d \\ \hline \end{array} $	$\widehat{Q}_{k}\left(a\right)=0$	$\widehat{R}_{k}\left(b\right)=0$	$ \xrightarrow{b} a $	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	c = d
	$a \ge 0$	$b \leq 0$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	c = - d

Signal Processing Structures

Stationarity Conditions

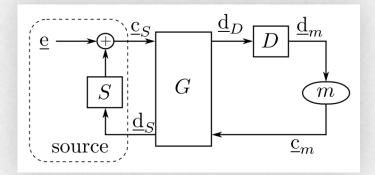
Conservation

1.


Signal Processing Structures

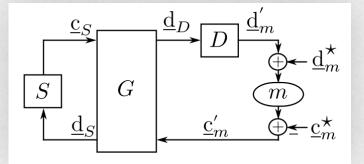
2. **Stationarity** Conditions

Conservation


3.

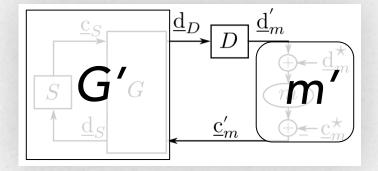
Examples

 $S^T = S^{-1}, G^T = G^{-1}$ m: a memoryless nonlinearity

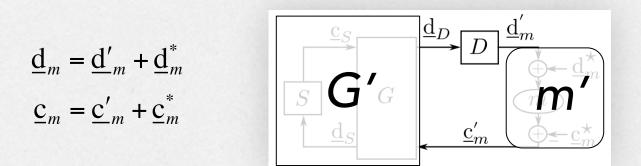

A solution \underline{c}^* , \underline{d}^* is known to exist when $\underline{d}_D = \underline{d}_m$

 $S^T = S^{-1}, G^T = G^{-1}$ m: a memoryless nonlinearity

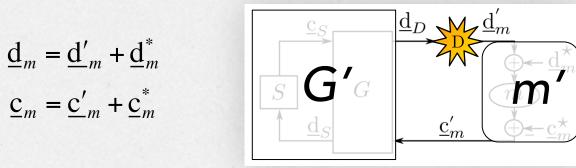
A solution \underline{c}^* , \underline{d}^* is known to exist when $\underline{d}_D = \underline{d}_m$


 $\underline{\mathbf{d}}_{m} = \underline{\mathbf{d}'}_{m} + \underline{\mathbf{d}}_{m}^{*}$ $\underline{\mathbf{c}}_{m} = \underline{\mathbf{c}'}_{m} + \underline{\mathbf{c}}_{m}^{*}$

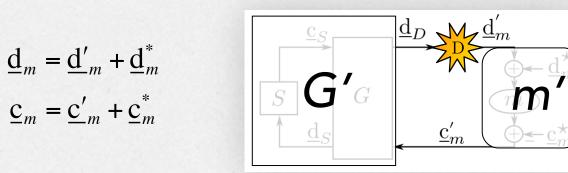
 $S^T = S^{-1}, G^T = G^{-1}$ m: a memoryless nonlinearity


A solution \underline{c}^* , \underline{d}^* is known to exist when $\underline{d}_D = \underline{d}_m$

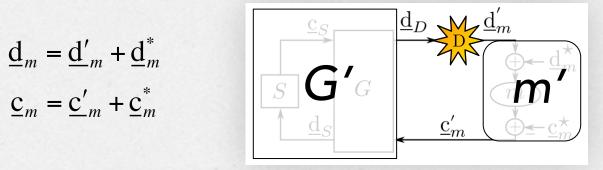
 $\underline{\mathbf{d}}_{m} = \underline{\mathbf{d}'}_{m} + \underline{\mathbf{d}}_{m}^{*}$ $\underline{\mathbf{c}}_{m} = \underline{\mathbf{c}'}_{m} + \underline{\mathbf{c}}_{m}^{*}$

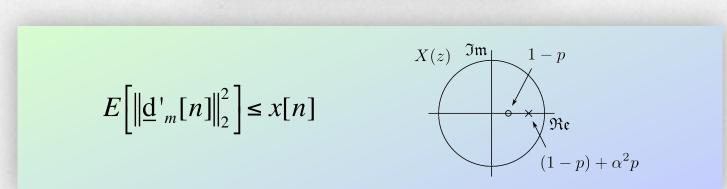

 $G'^{T}=G'^{-1}$ m': a memoryless nonlinearity

A solution \underline{c}^* , \underline{d}^* is known to exist when $\underline{d}_D = \underline{d}_m$ If $G'm'(\cdot)$ is contractive $(||\underline{d}_D||_2 \le \alpha ||\underline{d}'_m||_2, \alpha < 1)...$


Linear (decaying exponential) convergence. $\left\|\underline{\mathbf{d}'}_{m}[n]\right\|_{2} \leq k\alpha^{n}$

A solution \underline{c}^* , \underline{d}^* is known to exist when $\underline{d}_D = \underline{d}_m$ If $G'm'(\cdot)$ is contractive for arbitrary subvector updates: $\underline{d}_D \rightarrow \underline{d'}_m$ One per step


Linear (decaying exponential) convergence. $\left\|\underline{\mathbf{d}'}_{m}[n]\right\|_{2} \le k\alpha^{n}$


A solution \underline{c}^* , \underline{d}^* is known to exist when $\underline{d}_D = \underline{d}_m$ If $G'm'(\cdot)$ is contractive for arbitrary subvector updates: $\underline{d}_D \rightarrow \underline{d'}_m$ Stochastic updates

$$E\left[\left\|\underline{d'}_{m}[n]\right\|_{2}^{2}\right] \le x[n]$$
$$x[n] = \alpha^{2} \sum_{m=1}^{\infty} x[n-m]p(\text{previous firing } m \text{ steps ago})$$

A solution \underline{c}^* , \underline{d}^* is known to exist when $\underline{d}_D = \underline{d}_m$ If $G'm'(\cdot)$ is contractive for arbitrary subvector updates: $\underline{d}_D \rightarrow \underline{d'}_m$ Stochastic updates – **Bernoulli** with probability p

Conservation in Signal Processing Systems

by

Thomas A. Baran

B.S. Electrical B.S. Biomedica S.M. EECS, Mass

Submitted to the Departme: in partial fulfillme Stationary Principles and Potential Functions for Nonlinear Networks*

Doctor of Philosophy in

by L. O. CHUA

CXVI. Some General Theorems for Non-Linear Systems Possessing Resistance.

> By WILLIAM MILLAR, Atomic Energy Research Establishment, Harwell*.

> > [Revised MS. received June 8, 1951.]

h for deriving various The concepts of total tal parametric content The results by Brayton alized to non-complete seudo-content, pseudoor which each of these ion is shown to be the in terms of standard

Primal canonical form:

$$\begin{array}{ll} \min_{\substack{\{y_1,\ldots,y_N\}\\\{a_1,\ldots,a_N\}}} & \sum_{k=1}^K Q_k(\underline{\mathbf{y}}_k^{(CR)}) \\ \text{s.t.} & \underline{\mathbf{a}}_k^{(CR)} = f_k(\underline{\mathbf{y}}_k^{(CR)}), \quad k = 1,\ldots,K \\ & A_\ell \underline{\mathbf{a}}_\ell^{(i)} = \underline{\mathbf{a}}_\ell^{(o)}, \quad \ell = 1,\ldots,L. \end{array}$$

$$\nabla Q_k(\underline{\mathbf{y}}_k^{(CR)}) = J_{f_k}^T(\underline{\mathbf{y}}_k^{(CR)})g_k(\underline{\mathbf{y}}_k^{(CR)}),$$

Primal canonical form:

$$\begin{array}{ll}
\min_{\substack{\{y_1,\ldots,y_N\}\\\{a_1,\ldots,a_N\}}} & \sum_{k=1}^{K} Q_k(\underline{\mathbf{y}}_k^{(CR)}) \\
\text{s.t.} & \underline{\underline{\mathbf{a}}}_k^{(CR)} = \overbrace{f_k(\underline{\mathbf{y}}_k^{(CR)}),}^{K=1,\ldots,K} \\
& A_{\ell} \underline{\underline{\mathbf{a}}}_{\ell}^{(i)} = \underline{\underline{\mathbf{a}}}_{\ell}^{(o)}, \quad \ell = 1,\ldots,L.
\end{array}$$

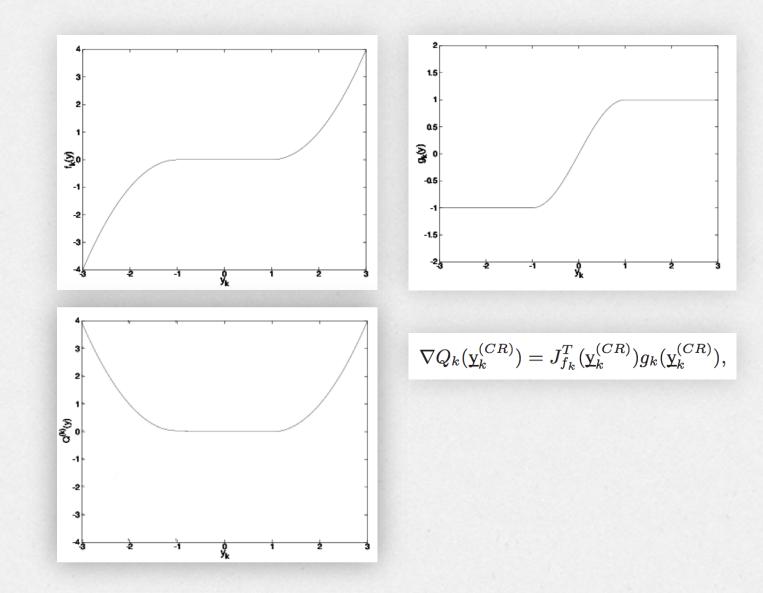
$$\nabla Q_k(\underline{\mathbf{y}}_k^{(CR)}) = J_{f_k}^T(\underline{\mathbf{y}}_k^{(CR)})g_k(\underline{\mathbf{y}}_k^{(CR)}),$$

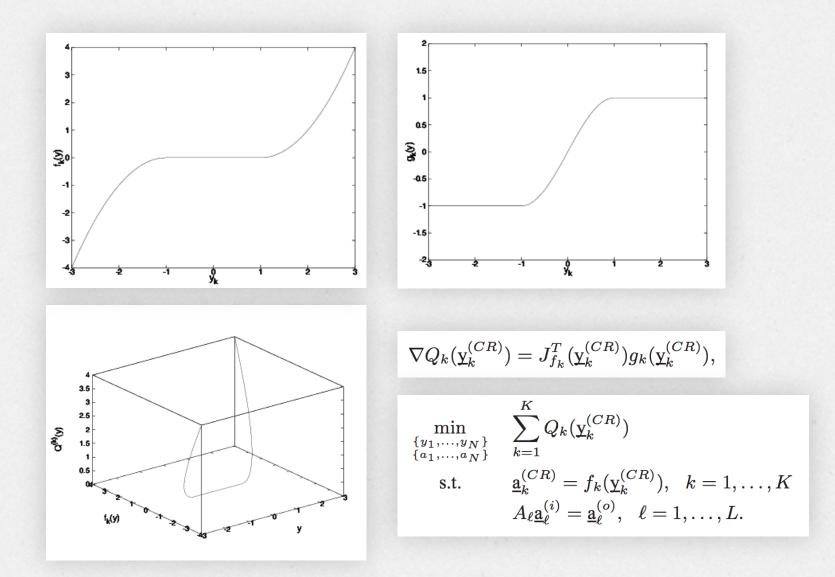
Primal canonical form:

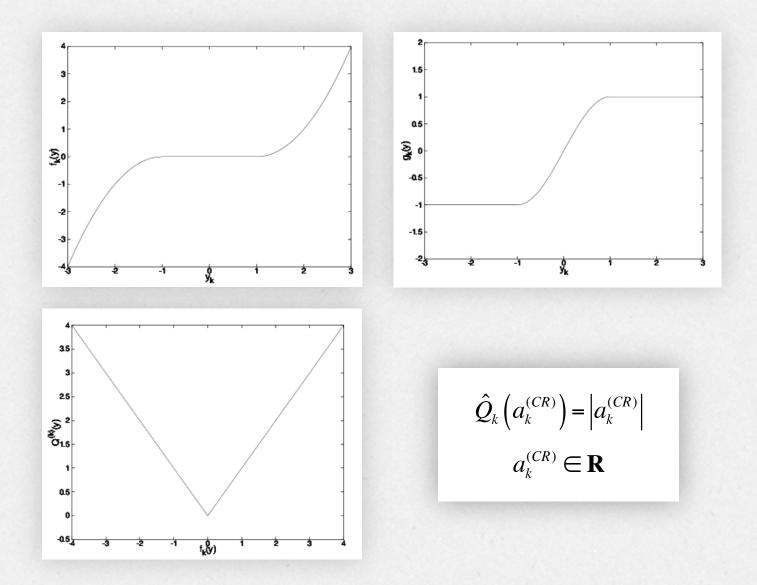
$$\min_{\substack{\{y_1,\ldots,y_N\}\\\{a_1,\ldots,a_N\}}} \sum_{k=1}^K Q_k(\underline{\mathbf{y}}_k^{(CR)})$$
s.t.
$$\underline{\mathbf{a}}_k^{(CR)} = f_k(\underline{\mathbf{y}}_k^{(CR)}), \quad k = 1,\ldots,K$$

$$A_\ell \underline{\mathbf{a}}_\ell^{(i)} = \underline{\mathbf{a}}_\ell^{(o)}, \quad \ell = 1,\ldots,L.$$

$$\nabla Q_k(\underline{\mathbf{y}}_k^{(CR)}) = J_{f_k}^T(\underline{\mathbf{y}}_k^{(CR)})g_k(\underline{\mathbf{y}}_k^{(CR)}),$$


For example:


$$f_k\left(\underline{y}_k^{(CR)}\right) = \underline{y}_k^{(CR)} \quad g_k\left(\underline{y}_k^{(CR)}\right) = > \qquad \nabla Q_k\left(\underline{y}_k^{(CR)}\right) = g_k\left(\underline{y}_k^{(CR)}\right)$$


Dual canonical form:

$$\max_{\substack{\{y_1,\ldots,y_N\}\\\{b_1,\ldots,b_N\}}} -\sum_{k=1}^K R_k(\underline{\mathbf{y}}_k^{(CR)})$$

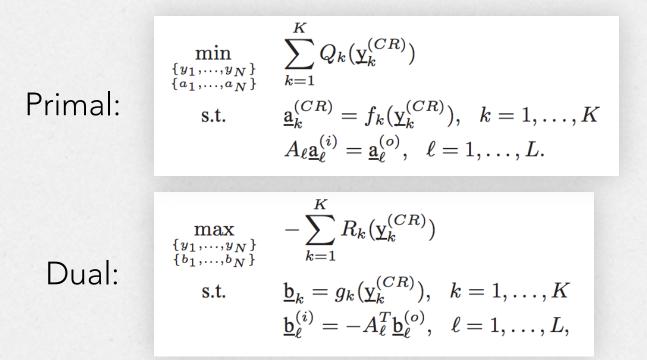
s.t.
$$\underline{\mathbf{b}}_k = g_k(\underline{\mathbf{y}}_k^{(CR)}), \quad k = 1,\ldots,K$$
$$\underline{\mathbf{b}}_\ell^{(i)} = -A_\ell^T \underline{\mathbf{b}}_\ell^{(o)}, \quad \ell = 1,\ldots,L,$$

$$R_k(\underline{\mathbf{y}}_k^{(CR)}) = \left\langle f_k(\underline{\mathbf{y}}_k^{(CR)}), g_k(\underline{\mathbf{y}}_k^{(CR)}) \right\rangle - Q_k(\underline{\mathbf{y}}_k^{(CR)}), \ k = 1, \dots, K,$$

Primal reduced form:

$$\min_{\substack{\{a_1,\ldots,a_N\}\\ \text{s.t.}}} \sum_{k=1}^K \widehat{Q}_k(\underline{a}_k^{(CR)})$$

$$\text{s.t.} \qquad \underline{a}_k^{(CR)} \in \mathcal{A}_k, \quad k = 1,\ldots,K$$

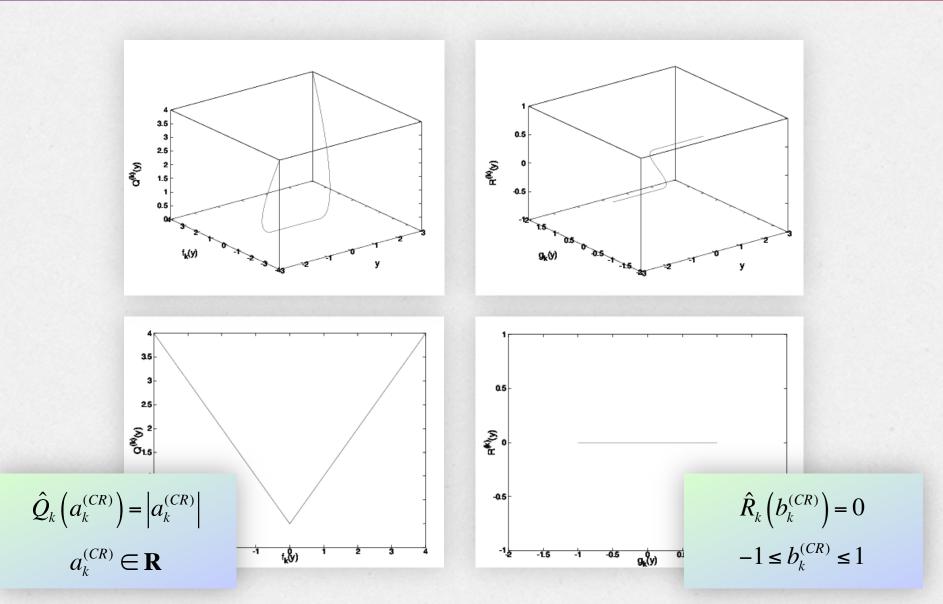

$$A_\ell \underline{a}_\ell^{(i)} = \underline{a}_\ell^{(o)}, \quad \ell = 1,\ldots,L.$$

$$\left\{ \begin{bmatrix} f_k(\underline{\mathbf{y}}_k^{(CR)}) \\ Q_k(\underline{\mathbf{y}}_k^{(CR)}) \end{bmatrix} : \underline{\mathbf{y}}_k^{(CR)} \in \mathbb{R}^{N_k^{(CR)}} \right\} = \left\{ \begin{bmatrix} \underline{\mathbf{a}}_k^{(CR)} \\ \widehat{Q}_k(\underline{\mathbf{a}}_k^{(CR)}) \end{bmatrix} : \underline{\mathbf{a}}_k^{(CR)} \in \mathcal{A}_k \right\}$$

Dual reduced form:

$$\max_{\substack{\{b_1,\ldots,b_N\}\\ \text{s.t.}}} -\sum_{k=1}^K \widehat{R}_k(\underline{\mathbf{b}}_k)$$

s.t.
$$\underline{\mathbf{b}}_k \in \mathcal{B}_k, \quad k = 1, \ldots, K$$
$$\underline{\mathbf{b}}_{\ell}^{(i)} = -A_{\ell}^T \underline{\mathbf{b}}_{\ell}^{(o)}, \quad \ell = 1, \ldots, L,$$


$$\left\{ \left[\begin{array}{c} g_k(\underline{\mathbf{y}}_k^{(CR)}) \\ R_k(\underline{\mathbf{y}}_k^{(CR)}) \end{array} \right] : \underline{\mathbf{y}}_k^{(CR)} \in \mathbb{R}^{N_k^{(CR)}} \right\} = \left\{ \left[\begin{array}{c} \underline{\mathbf{b}}_k \\ \widehat{R}_k(\underline{\mathbf{a}}_k^{(CR)}) \end{array} \right] : \underline{\mathbf{b}}_k \in \mathcal{B}_k \right\}$$

Conditions:

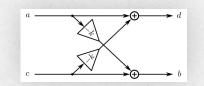
$$\underline{\mathbf{a}}_{k}^{(CR)} = f_{k}(\underline{\mathbf{y}}_{k}^{(CR)}), \quad k = 1, \dots, K$$
$$A_{\ell} \underline{\mathbf{a}}_{\ell}^{(i)} = \underline{\mathbf{a}}_{\ell}^{(o)}, \quad \ell = 1, \dots, L.$$

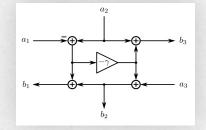
$$\underline{\mathbf{b}}_{k}^{(CR)} = g_{k}(\underline{\mathbf{y}}_{k}^{(CR)}), \quad k = 1, \dots, K$$
$$\underline{\mathbf{b}}_{\ell}^{(i)} = -A_{\ell}^{T} \underline{\mathbf{b}}_{\ell}^{(o)}, \quad \ell = 1, \dots, L,$$

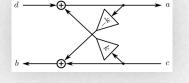
1.

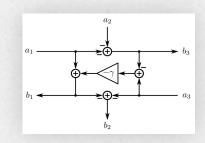
Signal Processing Structures

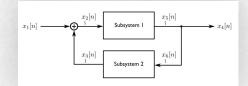
2. **Stationarity** Conditions

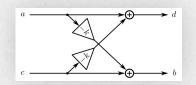

Conservation

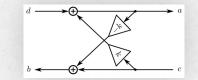

3.

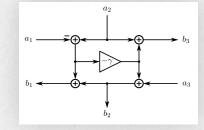

Examples

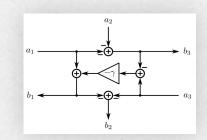

Symbol	Reduced-form primal components	Reduced-form dual components	Behavior (canonical coordinates)	Transformation matrix	Realization as a map
$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	$\widehat{Q}_{k}\left(a ight)=0$	$\widehat{R}_{k}\left(b\right) = \rho b$	$ \begin{array}{c c} & b \\ \hline & \rho \\ \hline & \rho \\ \hline & \rho \\ \hline & a \end{array} $	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = -d + 2\rho$
	$a = \rho$	$b\in\mathbb{R}$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = d - 2\rho$
$ \begin{array}{c} Q_k \\ \hline P \\ \hline P \\ \hline R_k \\ \hline P \\ \hline P \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} (M) \\ \hline M \\ \hline \\ M \\ \hline \end{array} \\ \begin{array}{c} Q_k \\ \hline P \\ \hline \end{array} \\ \begin{array}{c} Q_k \\ \hline \\ P \\ \hline \end{array} \\ \begin{array}{c} (M) \\ \hline \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \hline \end{array} \\ \begin{array}{c} (M) \\ \hline \end{array} \\ \begin{array}{c} (M) \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \hline \end{array} \\ \begin{array}{c} (M) \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \hline \end{array} \\ \begin{array}{c} (M) \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (M) \\ \end{array} \\ $	$\widehat{Q}_{k}\left(a\right)=\rho a$	$\widehat{R}_{k}\left(b ight)=0$	$\begin{array}{c c} & b \\ & & \rho \\ \hline & & & a \end{array}$	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = d - 2\rho$
	$a \in \mathbb{R}$	$b = \rho$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = -d + 2\rho$
$ \begin{array}{c} $				$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$	$c = \begin{cases} d+2, & d < -1 \\ -d, & d \le 1 \\ d-2, & d > 1 \end{cases}$
$ \begin{array}{c} R_k \\ \bullet \\ -1 \\ 1 \\ 1 \end{array} \end{array} $	Where we	$\bullet \bullet \bullet \bullet \qquad \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$	$c = \begin{cases} -d-2, & d < -1 \\ d, & d \le 1 \\ -d+2, & d > 1 \end{cases}$		
$ \begin{array}{c} $			$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$	$c = \left\{ \begin{array}{ll} \frac{1-\rho}{1+\rho}d, & d \leq \frac{1}{\rho}+1 \\ d-2, & d > \frac{1}{\rho}+1 \\ d+2, & d < -\frac{1}{\rho}-1 \end{array} \right.$	
$ \begin{array}{c} \overset{-}{\underset{R_{k}}{\overset{-}}} \overset{-}{\underset{R_{k}}{\overset{-}}} \overset{(M)}{\underset{\frac{-}{\rho}}{\overset{-}}} \overset{(M)}{\underset{\frac{-}{\rho}}{\overset{(M)}{\underset{\frac{-}{\rho}}{\overset{-}}} \overset{(M)}{\underset{\frac{-}{\rho}}{\overset{(M)}{\underset{\frac{-}{\rho}}{\overset{\frac{-}{\rho}}{\overset{\frac{-}{\rho}}}} \overset{(M)}{\underset{\frac{-}{\rho}}{\overset{(M)}{\overset{\frac{-}{\rho}}}} \overset{(M)}{\underset{\frac{-}{\rho}}{\overset{(M)}{\underset{\frac{-}{\rho}}} \overset{(M)}{\underset{\frac{-}{\rho}}{\overset{(M)}{\overset{\frac{-}{\rho}}}} \overset{(M)}{\underset{\frac{-}{\rho}}{\overset{(M)}{\underset{\frac{-}{\rho}}} \overset{(M)}{\underset{\frac{-}{\rho}}} \overset{(M)}{\underset{\frac{-}{\rho}}{\overset{(M)}{\underset{\frac{-}{\rho}}} \overset{(M)}{\underset{\frac{-}{\rho}}} (M$	$a \in \mathbb{R}$	$-1 \le b \le 1$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{\rho - 1}{\rho + 1} d, & d \le \frac{1}{\rho} + 1 \\ -d + 2, & d > \frac{1}{\rho} + 1 \\ -d - 2, & d < -\frac{1}{\rho} - 1 \end{cases}$
$ \begin{pmatrix} Q_k & (\rho_+) \\ \hline (\rho) & a \\ \hline (\frac{1}{\rho}) & f \\ \hline b \\ \hline b \\ \hline \end{pmatrix} \begin{pmatrix} (M) \\ c \\ d \\ \hline d \\ \hline \end{pmatrix} \text{ or } \begin{pmatrix} Q_k & (\rho_+) \\ \hline (\rho) & a \\ \hline \\ a \\ \hline \end{pmatrix} \begin{pmatrix} (M) \\ c \\ d \\ \hline \\ d \\ \hline \end{pmatrix} d $	$\widehat{Q}_{k}\left(a\right) = \begin{cases} \frac{1}{2}\rho_{+}a^{2} & a \ge 0\\ \frac{1}{2}\rho_{-}a^{2} & a < 0 \end{cases}$	$\widehat{R}_{k}\left(b\right) = \begin{cases} \frac{1}{2}\frac{1}{\rho_{+}}b^{2} & b \ge 0\\ \frac{1}{2}\frac{1}{p_{-}}b^{2} & b < 0 \end{cases}$	ρ_+ a	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = \left\{ \begin{array}{ll} \frac{1-\rho_+}{1+\rho_+}d, & d \ge 0\\ \frac{1-\rho}{1+\rho}d, & d < 0 \end{array} \right.$
	$a \in \mathbb{R}$	$b\in\mathbb{R}$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{\rho_+ - 1}{\rho_+ + 1} d, & d \ge 0\\ \frac{\rho 1}{\rho + 1} d, & d < 0 \end{cases}$
$ \begin{array}{c} Q_k \\ \hline \\ R_k \\ \hline \\ \end{array} \\ b \\ \end{array} \\ \begin{pmatrix} M \\ d \\ \end{array} \\ or \\ \begin{pmatrix} Q_k \\ \hline \\ M \\ \hline \\ \end{array} \\ \begin{pmatrix} Q_k \\ \hline \\ M \\ d \\ \end{pmatrix} \\ d \\ \end{pmatrix} $	$\widehat{Q}_{k}\left(a\right)=0$	$\widehat{R}_{k}\left(b\right)=0$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	c = d
	$a \ge 0$	$b \leq 0$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	c = - d

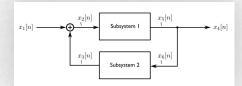

Conservation: the bridge

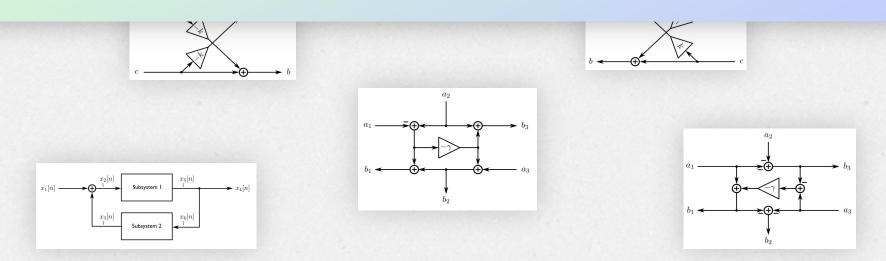






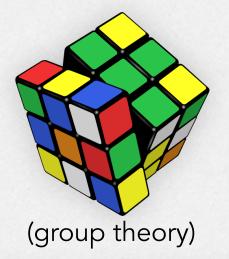



$$\begin{aligned} -2x_1[n_0]x_4[n_0] + 2x_2[n_0]x_5[n_0] + -2x_3[n_0]x_6[n_0] &= 0\\ 2\gamma(a_1^2 - b_1^2) + 2(1 - \gamma)(a_2^2 - b_2^2) + 2(a_3^2 - b_3^2) &= 0\\ 2(1 - \gamma)(a_1^2 - b_1^2) + 2\gamma(a_2^2 - b_2^2) + 2\gamma(1 - \gamma)(a_3^2 - b_3^2) &= 0\\ 2(k^2 - 1)(a^2 - c^2) + 2(d^2 - b^2) &= 0 \end{aligned}$$



$$\begin{aligned} -2x_1[n_0]x_4[n_0] + 2x_2[n_0]x_5[n_0] + -2x_3[n_0]x_6[n_0] &= 0\\ 2\gamma(a_1^2 - b_1^2) + 2(1 - \gamma)(a_2^2 - b_2^2) + 2(a_3^2 - b_3^2) &= 0\\ 2(1 - \gamma)(a_1^2 - b_1^2) + 2\gamma(a_2^2 - b_2^2) + 2\gamma(1 - \gamma)(a_3^2 - b_3^2) &= 0 \end{aligned}$$

A key challenge: organizing system variables

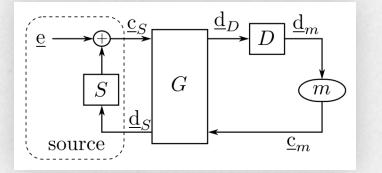

$$\begin{aligned} -2x_1[n_0]x_4[n_0] + 2x_2[n_0]x_5[n_0] + -2x_3[n_0]x_6[n_0] &= 0\\ \hline 2\gamma(a_1^2 - b_1^2) + 2(1 - \gamma)(a_2^2 - b_2^2) + 2(a_3^2 - b_3^2) &= 0\\ \hline 2(1 - \gamma)(a_1^2 - b_1^2) + 2\gamma(a_2^2 - b_2^2) + 2\gamma(1 - \gamma)(a_3^2 - b_3^2) &= 0\\ \hline 2(k^2 - 1)(a^2 - c^2) + 2(d^2 - b^2) &= 0 \end{aligned}$$

Conservation in Signal Processing Systems

by Thomas A. Baran

Contribution: identified isomorphism between a class of conservation principles in signal processing algorithms

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

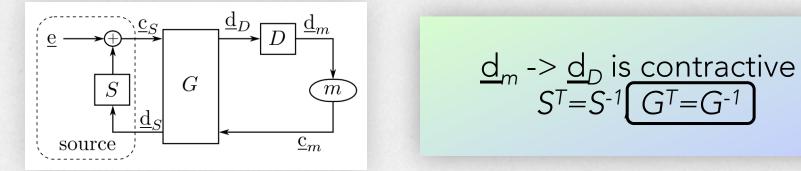

Conservation in Signal Processing Systems

by Thomas A. Baran

Contribution: identified isomorphism between a class of conservation principles in signal processing algorithms

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Conditions for stability:


$\underline{d}_m \rightarrow \underline{d}_D$ is contractive $S^T = S^{-1}, G^T = G^{-1}$

Stationarity conditions:

$$\underline{\mathbf{a}}_{k}^{(CR)} = f_{k}(\underline{\mathbf{y}}_{k}^{(CR)}), \quad k = 1, \dots, K$$
$$A_{\ell} \underline{\mathbf{a}}_{\ell}^{(i)} = \underline{\mathbf{a}}_{\ell}^{(o)}, \quad \ell = 1, \dots, L.$$

$$\underline{\mathbf{b}}_{k}^{(CR)} = g_{k}(\underline{\mathbf{y}}_{k}^{(CR)}), \quad k = 1, \dots, K$$
$$\underline{\mathbf{b}}_{\ell}^{(i)} = -A_{\ell}^{T} \underline{\mathbf{b}}_{\ell}^{(o)}, \quad \ell = 1, \dots, L,$$

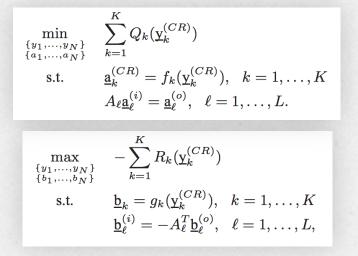
Conditions for stability:

 $\langle \underline{\mathbf{a}}, \underline{\mathbf{b}} \rangle = 0$ $||\underline{\mathbf{d}}||_2^2 - ||\underline{\mathbf{c}}||_2^2 = 0$

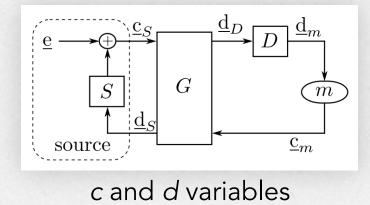
Stationarity conditions:

$$\underline{\mathbf{a}_{k}^{(CR)}} = f_{k}(\underline{\mathbf{y}_{k}^{(CR)}}), \quad k = 1, \dots, K$$
$$A_{\ell}\underline{\mathbf{a}}_{\ell}^{(i)} = \underline{\mathbf{a}}_{\ell}^{(o)}, \quad \ell = 1, \dots, L.$$

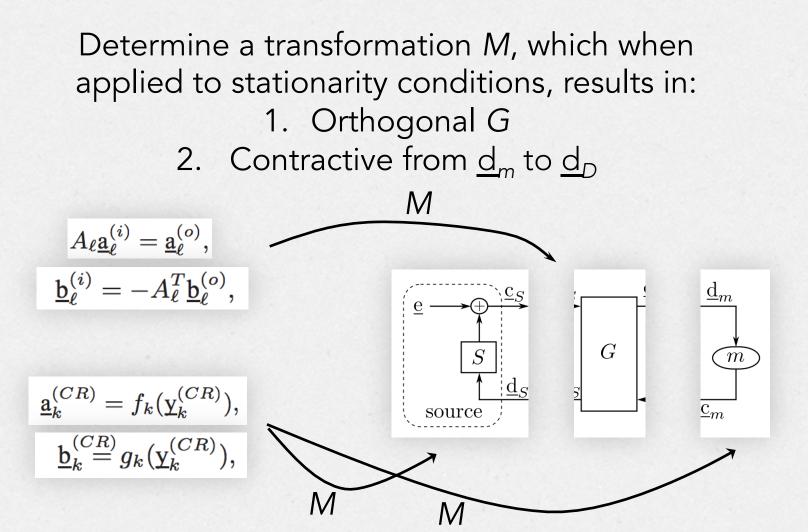
$$\underbrace{\underline{\mathbf{b}}_{k}^{(CR)} g_{k}(\underline{\mathbf{y}}_{k}^{(CR)})}_{\underline{\mathbf{b}}_{\ell}^{(i)} = -A_{\ell}^{T} \underline{\mathbf{b}}_{\ell}^{(o)}}, \quad k = 1, \dots, K$$


Isomorphic conservation principles:

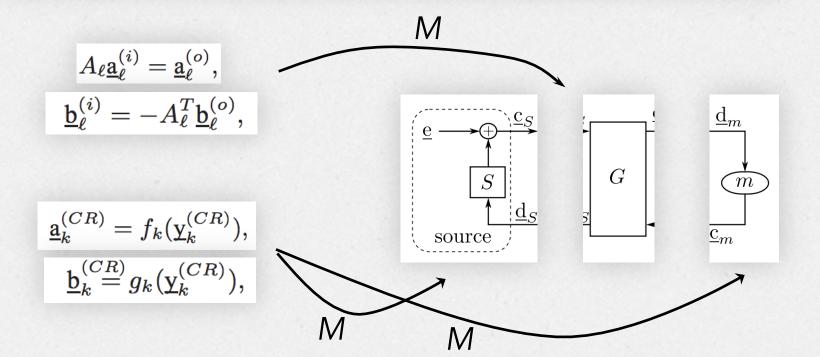
$$\langle \underline{\mathbf{a}}, \underline{\mathbf{b}} \rangle = 0$$
 $||\underline{\mathbf{d}}||_2^2 - ||\underline{\mathbf{c}}||_2^2 = 0$


(Sylvester's Law of Inertia)

General strategy in linking structures to conditions


Determine a transformation *M*, which when applied to stationarity conditions, results in: 1. Orthogonal *G* 2. Contractive from <u>d</u>_m to <u>d</u>_D

a and b variables



General strategy in linking structures to conditions

General strategy in linking structures to conditions

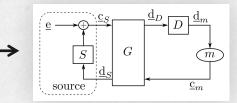
Resulting structure processes a superposition of primal and dual variables

General strategy in linking structures to conditions

Determine a transformation M, which when applied to stationarity conditions, results in: 1. Orthogonal G2. Contractive from \underline{d}_m to \underline{d}_D

M can, in general, depend on A_1

General strategy in linking structures to conditions

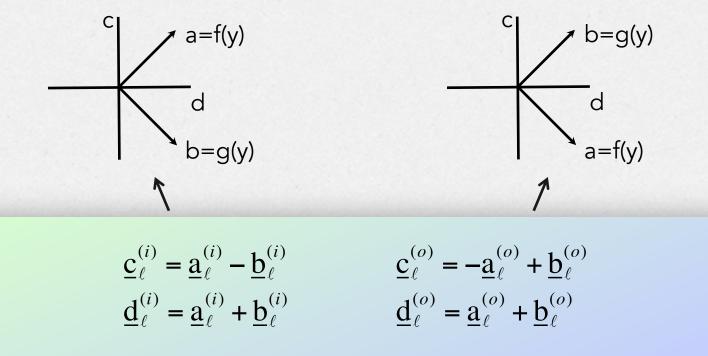

Determine a transformation M, which when applied to stationarity conditions, results in: 1. Orthogonal G2. Contractive from \underline{d}_m to \underline{d}_D

$$\underline{\mathbf{c}}_{\ell}^{(i)} = \underline{\mathbf{a}}_{\ell}^{(i)} - \underline{\mathbf{b}}_{\ell}^{(i)} \qquad \underline{\mathbf{c}}_{\ell}^{(o)} = -\underline{\mathbf{a}}_{\ell}^{(o)} + \underline{\mathbf{b}}_{\ell}^{(o)}$$
$$\underline{\mathbf{d}}_{\ell}^{(i)} = \underline{\mathbf{a}}_{\ell}^{(i)} + \underline{\mathbf{b}}_{\ell}^{(i)} \qquad \underline{\mathbf{d}}_{\ell}^{(o)} = \underline{\mathbf{a}}_{\ell}^{(o)} + \underline{\mathbf{b}}_{\ell}^{(o)}$$

A selection for M independent of A_1

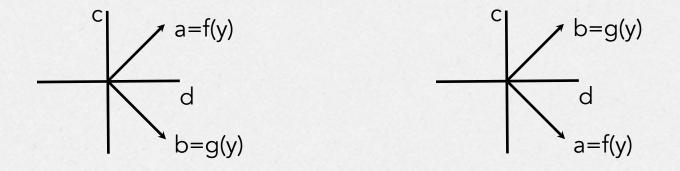
1. Orthogonal G

$$\begin{array}{c} A_{\ell}\underline{\mathbf{a}}_{\ell}^{(i)} = \underline{\mathbf{a}}_{\ell}^{(o)}, \\ \underline{\mathbf{b}}_{\ell}^{(i)} = -A_{\ell}^{T}\underline{\mathbf{b}}_{\ell}^{(o)}, \end{array} \xrightarrow{} \begin{array}{c} \mathbf{A}_{\ell} = \left(I_{N_{\ell}^{(LI)}} + \begin{bmatrix} 0 & -A_{\ell}^{T} \\ A_{\ell} & 0 \end{bmatrix}\right) \left(I_{N_{\ell}^{(LI)}} - \begin{bmatrix} 0 & -A_{\ell}^{T} \\ A_{\ell} & 0 \end{bmatrix}\right)^{-1} \\ G_{\ell}\underline{\mathbf{c}}_{\ell}^{(LI)} = \underline{\mathbf{d}}_{\ell}^{(LI)} \end{array}$$

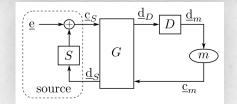


$$\underline{\mathbf{c}}_{\ell}^{(i)} = \underline{\mathbf{a}}_{\ell}^{(i)} - \underline{\mathbf{b}}_{\ell}^{(i)} \qquad \underline{\mathbf{c}}_{\ell}^{(o)} = -\underline{\mathbf{a}}_{\ell}^{(o)} + \underline{\mathbf{b}}_{\ell}^{(o)}$$

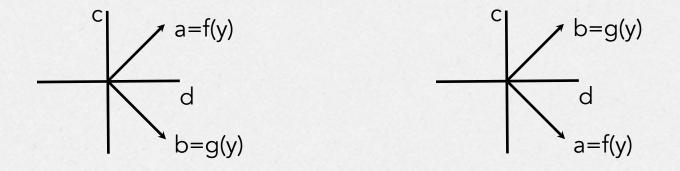
$$\underline{\mathbf{d}}_{\ell}^{(i)} = \underline{\mathbf{a}}_{\ell}^{(i)} + \underline{\mathbf{b}}_{\ell}^{(i)} \qquad \underline{\mathbf{d}}_{\ell}^{(o)} = \underline{\mathbf{a}}_{\ell}^{(o)} + \underline{\mathbf{b}}_{\ell}^{(o)}$$

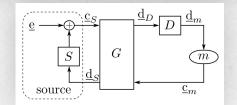

A selection for M independent of A₁

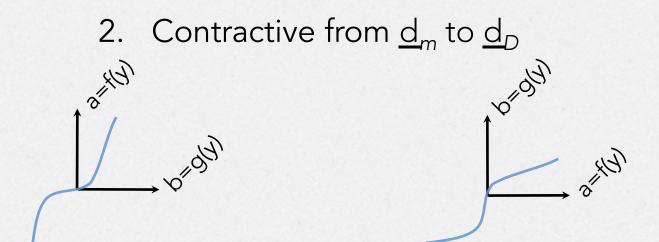
2. Contractive from
$$\underline{d}_m$$
 to \underline{d}_D



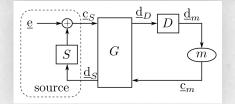
A selection for M independent of A_1


2. Contractive from \underline{d}_m to \underline{d}_D

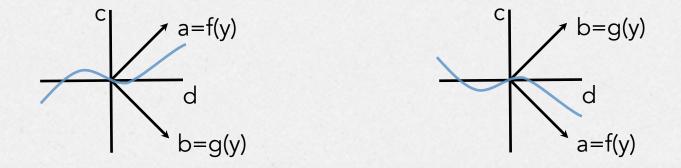

For example (contractive from \underline{d}_m to \underline{c}_m): $f_k(y_k) = y_k \qquad g_k(y_k) \qquad = > \qquad Q'_k(y_k) = g_k(y_k)$

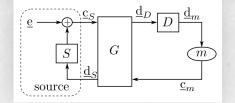


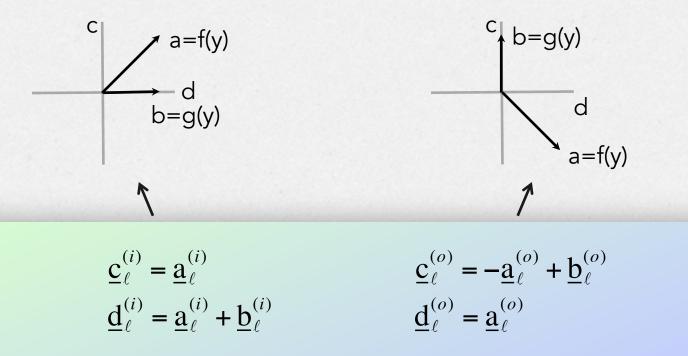
2. Contractive from \underline{d}_m to \underline{d}_D



For example (contractive from \underline{d}_m to \underline{c}_m): $f_k(y_k) = y_k \qquad g_k(y_k) \qquad = > \qquad Q'_k(a_k) = g_k(a_k)$




For example (contractive from \underline{d}_m to \underline{c}_m): $\eta \leq Q_k''(a_k) \leq \frac{1}{\eta} \quad 0 < \eta < 1 \quad => \quad \eta \leq g_k'(a_k) \leq \frac{1}{\eta}$


2. Contractive from \underline{d}_m to \underline{d}_D

For example (contractive from \underline{d}_m to \underline{c}_m): $\eta \leq Q_k''(a_k) \leq \frac{1}{\eta} \quad 0 < \eta < 1 \quad => \quad |c_k'(d_k)| \leq \frac{1-\eta}{1+\eta}$

$$\mathbf{A}_{l}: \quad \underline{\mathbf{a}}_{1}^{(i)} + \underline{\mathbf{a}}_{2}^{(i)} = \underline{\mathbf{a}}_{3}^{(o)}$$

A selection for M utilizing structure in A_1

Overview

1.

Signal Processing Structures

2. **Stationarity** Conditions

Conservation

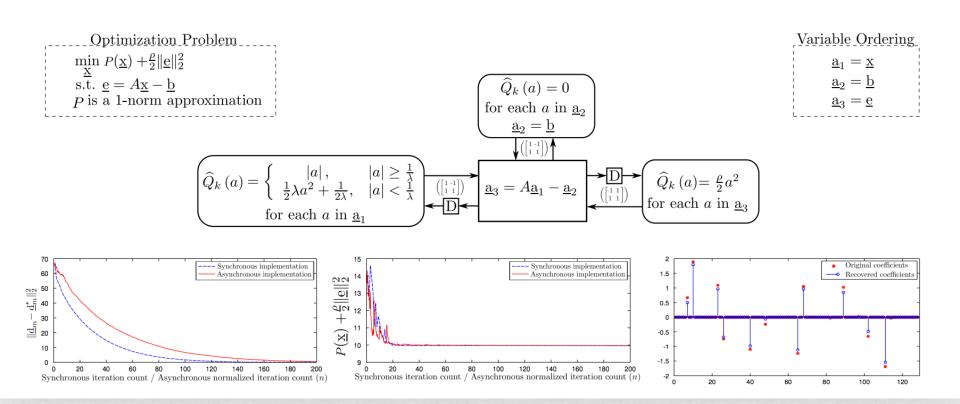
3.

Key result: elements for asynchronous optimization

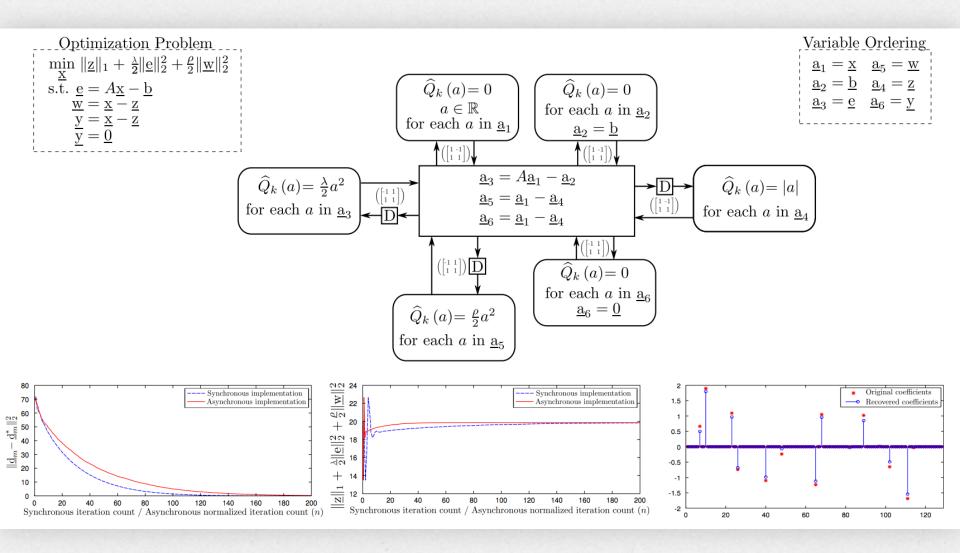
$$\min_{\substack{\{a_1,\ldots,a_N\}\\ \text{s.t.}}} \sum_{k=1}^K \widehat{Q}_k(\underline{\mathbf{a}}_k^{(CR)})$$

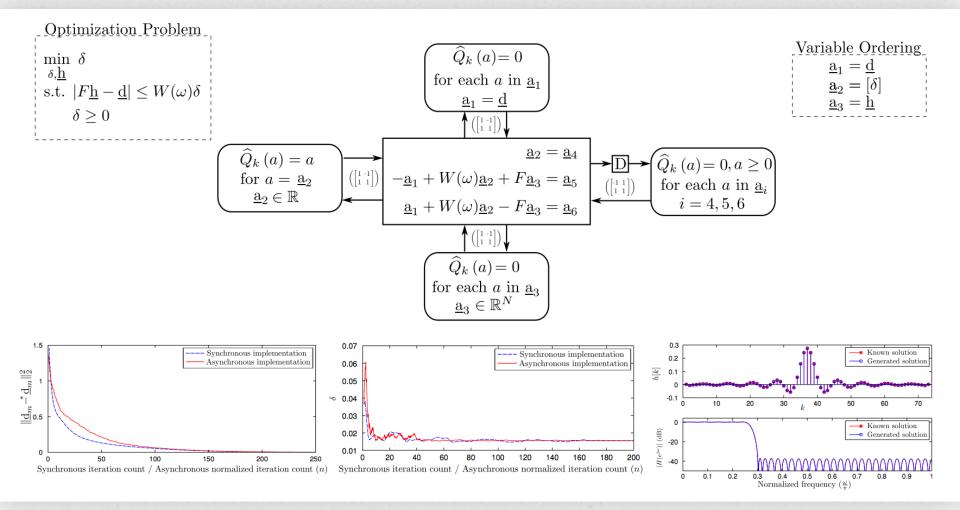
s.t.
$$\underline{\mathbf{a}}_k^{(CR)} \in \mathcal{A}_k, \quad k = 1,\ldots,K$$
$$A_\ell \underline{\mathbf{a}}_\ell^{(i)} = \underline{\mathbf{a}}_\ell^{(o)}, \quad \ell = 1,\ldots,L.$$

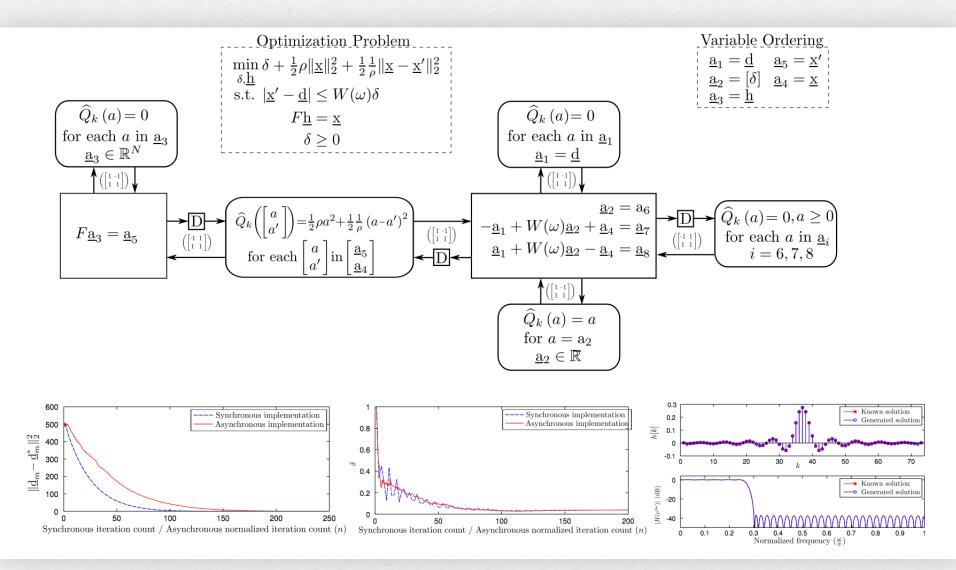
 $G_{\ell} = \left(I_{N_{\ell}^{(LI)}} + \begin{bmatrix} 0 & -A_{\ell}^{T} \\ A_{\ell} & 0 \end{bmatrix} \right) \left(I_{N_{\ell}^{(LI)}} - \begin{bmatrix} 0 & -A_{\ell}^{T} \\ A_{\ell} & 0 \end{bmatrix} \right)^{-1}$ $G_{\ell} \underline{\mathbf{c}}_{\ell}^{(LI)} = \underline{\mathbf{d}}_{\ell}^{(LI)}$

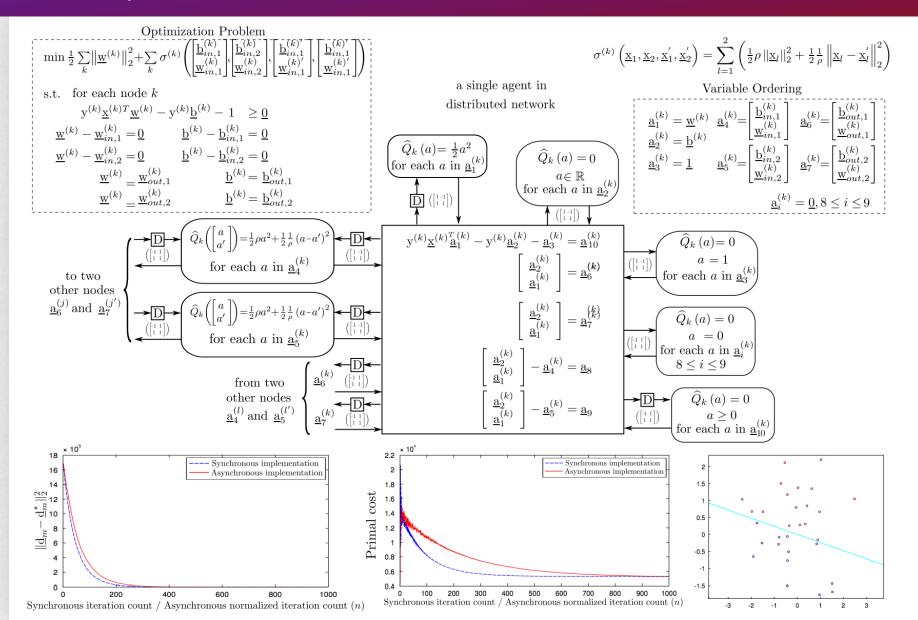

Key result: elements for asynchronous optimization

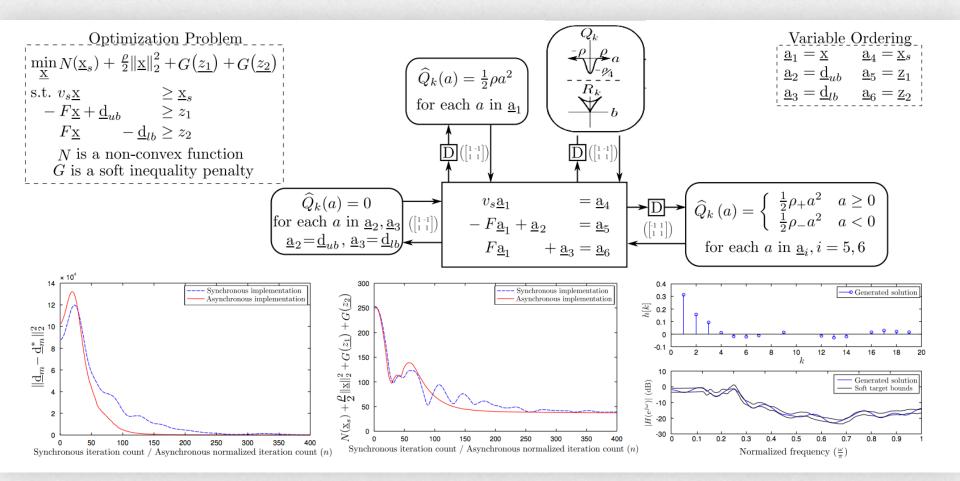
Symbol	Reduced-form primal components	Reduced-form dual components	Behavior (canonical coordinates)	Transformation matrix	Realization as a map
$\begin{array}{c c} & Q_k \\ \hline & \rho \\ \hline & a \\ \hline & R_k \\ \rho \\ \hline & b \end{array} \xrightarrow{(M)} c & \text{or} \\ \hline & Q_k \\ \hline & \rho \\ \hline & a \end{array} \xrightarrow{(M)} d \\ \hline & d \end{array}$	$\widehat{Q}_{k}\left(a\right)=0$	$\widehat{R}_{k}\left(b\right)=\rho b$	$ \begin{array}{c c} & b \\ \hline & \rho \\ \hline & \rho \\ \hline & \rho \\ \end{array} a $	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = -d + 2\rho$
	$a = \rho$	$b\in\mathbb{R}$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = d - 2\rho$
$ \begin{array}{c c} Q_k \\ \hline P \downarrow^{-} a \\ \hline R_k \\ \hline R_k \\ \hline \end{array} \begin{array}{c} C \\ \hline M \\ \hline \end{array} \begin{array}{c} C \\ \hline P \downarrow^{-} a \\ \hline \end{array} \begin{array}{c} C \\ \hline P \downarrow^{-} a \\ \hline \end{array} \begin{array}{c} C \\ \hline M \\ \hline \end{array} \begin{array}{c} C \\ \hline \end{array} \end{array} \begin{array}{c} C \\ \hline \end{array} \begin{array}{c} C \\ \end{array} \end{array} \end{array} \begin{array}{c} C \\ \end{array} \end{array} \begin{array}{c} C \\ \end{array} \end{array} \begin{array}{c} C \\ \end{array} \end{array} \end{array} $ \end{array}	$\widehat{Q}_{k}\left(a\right) = \rho a$	$\widehat{R}_{k}\left(b\right)=0$	$\qquad \qquad $	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = d - 2\rho$
$ \begin{array}{c c} & & & \\ \hline & & \\ & & $	$a \in \mathbb{R}$	$b = \rho$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c=-d+2\rho$
$\begin{array}{c c} & & & & \\ & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	$\widehat{Q}_{k}\left(a\right) = \left a\right $	$\widehat{R}_{k}\left(b\right)=0$	a	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} d+2, & d < -1 \\ -d, & d \le 1 \\ d-2, & d > 1 \end{cases}$
R_k or A A A A	$a \in \mathbb{R}$	$-1 \le b \le 1$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} -d-2, & d < -1 \\ d, & d \le 1 \\ -d+2, & d > 1 \end{cases}$
$ \begin{array}{c c} Q_k \\ \hline \hline \\$	$ \begin{array}{c} Q_k \\ \hline p \mid \frac{1}{\rho} \mid \frac{1}{\rho} \\ \hline a \\ \hline (M) \\ \hline (Q_k (a) = \begin{cases} a & a \ge \frac{1}{\rho} \\ \hline \frac{1}{2}\rho a^2 + \frac{1}{2\rho} & a < \frac{1}{\rho} \end{array} $	$\widehat{R}_{k}\left(b ight)=rac{1}{2 ho}b^{2}-rac{1}{2 ho}$	$\begin{array}{c c} b \\ \hline 1 \\ \hline \rho \\ \hline -1 \end{array} a$	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{1-\rho}{1+\rho}d, & d \le \frac{1}{\rho} + 1\\ d-2, & d > \frac{1}{\rho} + 1\\ d+2, & d < -\frac{1}{\rho} - 1 \end{cases}$
$ \begin{array}{c} \hline R_k \\ \hline \\ $	$a \in \mathbb{R}$	$-1 \le b \le 1$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \left\{ \begin{array}{ll} \frac{\rho - 1}{\rho + 1}d, & d \leq \frac{1}{\rho} + 1 \\ -d + 2, & d > \frac{1}{\rho} + 1 \\ -d - 2, & d < -\frac{1}{\rho} - 1 \end{array} \right.$
$(\begin{array}{c} Q_{k} (\rho_{+}) \\ \hline (\rho_{-}) \land a \\ \hline (M) \\ \hline (M) \\ \hline (P_{-}) \land a \\ \hline (Q_{k} (\rho_{+}) \\ \hline (M) \\ \hline ($	$\widehat{Q}_{k}(a) = \begin{cases} \frac{1}{2}\rho_{+}a^{2} & a \ge 0\\ \frac{1}{2}\rho_{-}a^{2} & a < 0 \end{cases}$	$\widehat{R}_{k}(b) = \begin{cases} \frac{1}{2} \frac{1}{\rho_{+}} b^{2} & b \ge 0\\ \frac{1}{2} \frac{1}{\rho_{-}} b^{2} & b < 0 \end{cases}$	$b \\ \rho_+ \\ $	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{1-\rho_+}{1+\rho_+}d, & d \ge 0\\ \frac{1-\rho}{1+\rho}d, & d < 0 \end{cases}$
$(\begin{array}{c} (1 \\ \overline{\rho_{+}}) \\ \hline b \\ \hline b \\ \hline \end{array}) \overset{\sim}{\longleftarrow} d$	$a \in \mathbb{R}$ $b \in \mathbb{R}$ ρ_{-1}	ρ_	$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{\rho_{+}-1}{\rho_{+}+1}d, & d \ge 0\\ \frac{\rho_{-}-1}{\rho_{-}+1}d, & d < 0 \end{cases}$	
$ \begin{array}{c c} Q_k \\ \hline \\ \hline \\ R_k \end{array} \xrightarrow{c} (M) \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\widehat{Q}_{k}\left(a ight)=0$	$\widehat{R}_{k}\left(b\right)=0$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	c = d
R_k or A d d	$a \ge 0$	$b \leq 0$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	c = - d


 $G_{\ell} = \left(I_{N_{\ell}^{(LI)}} + \begin{bmatrix} 0 & -A_{\ell}^{T} \\ A_{\ell} & 0 \end{bmatrix} \right) \left(I_{N_{\ell}^{(LI)}} - \begin{bmatrix} 0 & -A_{\ell}^{T} \\ A_{\ell} & 0 \end{bmatrix} \right)^{-1}$ $G_{\ell} \underline{\mathbf{c}}_{\ell}^{(LI)} = \underline{\mathbf{d}}_{\ell}^{(LI)}$


T. A. Baran and T. A. Lahlou, "Conservative Signal Processing Architectures For Asynchronous, Distributed Optimization Part I: General Framework," in Proc. of IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014.


Symbol	Reduced-form primal components	Reduced-form dual components	Behavior	Transformation matrix	Realization
$ \begin{array}{c} Q_k \\ \hline \rho \\ \hline \end{pmatrix} \\ \hline (M) \\ \hline \phi \\ d \end{array} $ or $ \begin{array}{c} Q_k \\ \hline \rho \\ \hline \rho \\ \hline \end{pmatrix} \\ \hline (M) \\ \hline \phi \\ d \end{array} $	primal components $\widehat{Q}_k(a) = 0$	dual components $\widehat{R}_{k}\left(b\right) = \rho b$	(canonical coordinates)	$ \begin{array}{c} \text{matrix} \\ M_k^{(CR)} = \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right] \end{array} $	as a map $c = -d + 2\rho$
$\begin{array}{c} R_k \\ \hline P \hline \hline P \\ \hline P \hline \hline P \\ \hline P \hline \hline P \hline \hline P \\ \hline P \hline \hline P \hline$	$a = \rho \qquad \qquad b \in \mathbb{R}$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = d - 2\rho$	
$ \begin{array}{c c} Q_k \\ \hline p + a \\ \hline R_k \\ \hline R_k \\ \hline \end{array} \begin{array}{c} C \\ \hline M \\ \hline d \\ \hline \end{array} \begin{array}{c} C \\ p + d \\ \hline \end{array} \begin{array}{c} Q_k \\ \hline P \\ \hline \end{array} \begin{array}{c} C \\ \hline \end{array} \begin{array}{c} C \\ \hline M \\ \hline \end{array} \begin{array}{c} C \\ \hline \end{array} \end{array} \begin{array}{c} C \\ \hline \end{array} \begin{array}{c} C \\ \hline \end{array} \end{array} \begin{array}{c} C \\ \hline \end{array} \begin{array}{c} C \\ \hline \end{array} \begin{array}{c} C \\ \end{array} \end{array} \begin{array}{c} C \\ \hline \end{array} \end{array} \begin{array}{c} C \\ \end{array} \end{array} \end{array} \end{array} $	$\widehat{Q}_{k}\left(a\right) = \rho a$	$\widehat{R}_{k}\left(b\right)=0$	$\begin{array}{c c} b \\ \hline \rho \\ \hline \end{array} \\ a \end{array}$	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = d - 2\rho$
$ \begin{array}{c} \overbrace{R_k} \\ \hline \\ $	$a \in \mathbb{R}$	$b = \rho$		$M_k^{(CR)} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$	$c = -d + 2\rho$
$ \begin{array}{c c} & Q_k \\ \hline & & \\ \hline & & \\ \hline & & \\ R_k \end{array} \xrightarrow{c} c \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \\ \hline$	$\widehat{Q}_{k}\left(a\right) = \left a\right $	$\widehat{R}_{k}\left(b\right)=0$	$ \begin{array}{c} b \\ 1 \\ \hline a \\ \hline -1 \\ \end{array} a $	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} d+2, & d < -1 \\ -d, & d \le 1 \\ d-2, & d > 1 \end{cases}$
$ \begin{array}{c} \hline R_k \\ \bullet \\ -1 \\ 1 \\ 1 \\ \end{array} \end{array} \begin{array}{c} (M) \\ \bullet \\ \bullet \\ \end{array} \\ \hline d \\ $	$a \in \mathbb{R}$	$-1 \le b \le 1$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} -d-2, & d < -1 \\ d, & d \le 1 \\ -d+2, & d > 1 \end{cases}$
$\begin{array}{c c} Q_k \\ \hline \hline \\ \\ \\ \\ \\ \hline \\$	$\widehat{Q}_{k}\left(a\right) = \begin{cases} a & a \ge \frac{1}{\rho} \\ \frac{1}{2}\rho a^{2} + \frac{1}{2\rho} & a < \frac{1}{\rho} \end{cases}$	$\widehat{R}_{k}\left(b\right) = \frac{1}{2\rho}b^{2} - \frac{1}{2\rho}$	$\begin{array}{c} b \\ 1 \\ \hline \rho \\ \hline -1 \end{array} a$	$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{1-\rho}{1+\rho}d, & d \le \frac{1}{\rho} + 1\\ d-2, & d > \frac{1}{\rho} + 1\\ d+2, & d < -\frac{1}{\rho} - 1 \end{cases}$
$ \begin{array}{c} \hline R_k \\ \hline \\ $	$a \in \mathbb{R}$	$-1 \le b \le 1$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \left\{ \begin{array}{ll} \frac{\rho - 1}{\rho + 1} d, & d \leq \frac{1}{\rho} + 1 \\ -d + 2, & d > \frac{1}{\rho} + 1 \\ -d - 2, & d < -\frac{1}{\rho} - 1 \end{array} \right.$
$(\begin{array}{c} Q_{k} \\ (\rho_{-}) \\ a \\ (M) \\ a \\ (M) \\ a \\ (P_{-}) \\ a \\ (P_{-}) \\ a \\ (M) \\ a \\ (M) \\ (M) \\ a \\ (M) $	$\widehat{Q}_{k}(a) = \begin{cases} \frac{1}{2}\rho_{+}a^{2} & a \ge 0\\ \frac{1}{2}\rho_{-}a^{2} & a < 0 \end{cases}$	$\widehat{R}_{k}(b) = \begin{cases} \frac{1}{2} \frac{1}{\rho_{+}} b^{2} & b \ge 0\\ \frac{1}{2} \frac{1}{1} \frac{1}{\rho_{-}} b^{2} & b < 0 \end{cases}$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{1-\rho_+}{1+\rho_+}d, & d \ge 0\\ \frac{1-\rho}{1+\rho}d, & d < 0 \end{cases}$
$(\begin{array}{c} 1\\ \hline \rho_{+} \end{array}) \\ \hline b \\ \hline b \\ \hline b \\ \hline c \\ c \\$	$a\in\mathbb{R}$	$b\in\mathbb{R}$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	$c = \begin{cases} \frac{\rho_{+}-1}{\rho_{+}+1}d, & d \ge 0\\ \frac{\rho_{-}-1}{\rho_{-}+1}d, & d < 0 \end{cases}$
$ \begin{array}{c} Q_k \\ \hline \\ \hline \\ R_k \end{array} \xrightarrow{c} (M) \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\widehat{Q}_{k}\left(a\right)=0$	$\widehat{R}_{k}\left(b\right)=0$		$M_k^{(CR)} \!=\! \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$	c = d
R_k d or a d d	$a \ge 0$	$b \leq 0$		$M_k^{(CR)} = \left[\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right]$	c = - d




T. A. Baran and T. A. Lahlou, "Conservative Signal Processing Architectures For Asynchronous, Distributed Optimization Part II: Example Systems," in Proc. of IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014.

Conservative Signal Processing Structures For Optimization

1. Enter parameters. Random example	Signal-Flow Architecture
$A \begin{bmatrix} [-1, 0, -1, 1, 3], \\ [0, 1, -2, 1, 1], \\ [1, 0, 4, 1, 3] \end{bmatrix}$	$f(\underline{x}) \xrightarrow{\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\right)} \underbrace{\underline{e} = A\underline{x} - \underline{b}} \xrightarrow{\left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}\right)} \underbrace{\underline{\rho} = A\underline{x} - \underline{b}} \underbrace{\underline{\rho} = A\underline{x} - \underline{b} \underbrace{\underline{\rho} = A\underline{x} - \underline{b}} \underbrace{\underline{\rho} = A\underline{x} - \underline{b}} \underbrace{\underline{\rho} = A\underline{x} - \underline{b} \underline{b} \underbrace{\underline{\rho} = A\underline{x} - \underline{b} \underline{b} \underline{b} \underline{b} \underline{b} \underline{b} \underline{b} \underline{b}$
ρ_x 1000 ρ_e 2	Optimization Problem
<pre>2. Initialize system. Initialize myLasso = new BLLasso(A, b, {'rho_x'; rho_x, 'rho_e'; rho_e}); 3. Process.</pre>	$\begin{split} \min_{\underline{x}} f\left(\underline{x}\right) + \frac{\mu_e}{2} \ \underline{e}\ _2^2 \\ \text{s.t.} \underline{e} = A\underline{x} - \underline{b} \\ \end{split} \\ \text{where } f \text{ approximates the 1-norm, i.e.} \\ f\left(a\right) = \begin{cases} a , & a \ge \frac{1}{\rho_c} \\ \frac{1}{2}\rho_x a^2 + \frac{1}{2\rho_c}, & a < \frac{1}{\rho_c} \end{cases} \end{split}$
Start Stop N 1 p 1 myLasso.process(N,p); Reset myLasso.reset();	Current Solution Iteration (equivalent count): 47.00
	<pre>x = myLasso.readout();</pre>

Conservative Signal Processing Structures For Optimization

1. Enter parameters.	Signal-Flow Architecture
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\underbrace{\underbrace{\underline{b} \text{ fixed}}_{\downarrow\left(\begin{bmatrix}i&i\\1\\1\end{bmatrix}\right)}}_{\left(\begin{bmatrix}i&i\\1\\1\end{bmatrix}\right)} \underbrace{\underline{c} = A\underline{x} - \underline{b}}_{\left(\begin{bmatrix}i&i\\1\\1\end{bmatrix}\right)} \underbrace{\underline{\rho} = A\underline{x} - \underline{b}}_{\left(\begin{bmatrix}i&i\\1\end{bmatrix}\right)} \underbrace{\underline{\rho} = A\underline{x} - \underline{b}}_{\left(\begin{bmatrix}i&i\\1\end{bmatrix}\right)} \underbrace{\underline{\rho} = A\underline{x} - \underline{b}}_{\left(\begin{bmatrix}i&i\\1\end{bmatrix}\right)} \underbrace{\underline{\rho} = A\underline{x} - \underline{b}}_{\left(\begin{bmatrix}i&i\\1\\1\end{bmatrix}\right)} \underbrace{\underline{\rho} = A\underline{x} - \underline{b}}_{\left(\begin{bmatrix}i&i\\1\\1\end{bmatrix}\right)} \underbrace{\underline{\rho} $
$\rho_e = 2$	Optimization Problem
2. Initialize system.	$\min_{\underline{x}} f(\underline{x}) + \frac{\nu_e}{2} \ \underline{e}\ _2^2$ s.t. $\underline{e} = A\underline{x} - \underline{b}$
Initialize myZeroNorm = new BLZeroNorm(A, b, rho_e);	s.t. $\underline{e} = A\underline{x} - \underline{p}$ where <i>f</i> approximates the 0-norm
3. Process.	Current Solution
Start Stop Step N 100 p 0.01 myZeroNorm.process(N,p) ;	Iteration (equivalent count): 174.00
Reset myZeroNorm.reset();	6 5 4 3 2 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Key results

A straightforward method for creating a class of signal processing structures for optimization

- 1. Write an optimization problem.
- 2. Combine specific associated elements (e.g. from table).
- 3. Implement synchronously or asynchronously.

4. Read out.

A strategy for determining additional signal-flow elements

- 1. Write component of stationarity condition.
- 2. Identify conservation principle.
- 3. Transform to obtain contractive system with $||\underline{d}||_2^2 ||\underline{c}||_2^2 = 0$.

Comments

When writing asynchronous optimization algorithms

If primal and dual variables are being passed around, may want to do something differently:

Identify stationarity conditions and conservation principle.

Modify the algorithm to operate on a linear superposition of primal and dual variables.

Signal processing platforms keep evolving Think creatively about designing algorithms to use commodity, high-performance platforms

Thank you!