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Linear (decaying exponential) convergence. 

A solution c*, d* is known to exist when d D = d m

G’ m’ 

If G’m’( . ) is contractive (||dD||2       ||d’m||2,               )…≤α α <1

d'm[n] 2 ≤ kα
n

dm = !d m +dm
∗

cm = !c m + cm
∗



A class of signal processing structures 

G’ m’ 

If G’m’( . ) is contractive for arbitrary subvector updates: dD    d’m

Linear (decaying exponential) convergence. 

d'm[n] 2 ≤ kα
n
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G’ m’ 

If G’m’( . ) is contractive for arbitrary subvector updates: dD    d’m

E d'm[n] 2
2!

"
#
$≤ x[n]

Stochastic updates

A solution c*, d* is known to exist when d D = d m

x[n]=α 2 x[n−m]
m=1
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∑ p(previous firing m steps ago)
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A class of signal processing structures 

G’ m’ 

If G’m’( . ) is contractive for arbitrary subvector updates: dD    d’m

E d'm[n] 2
2!

"
#
$≤ x[n]

Stochastic updates – Bernoulli with probability p

A solution c*, d* is known to exist when d D = d m

dm = !d m +dm
∗

cm = !c m + cm
∗
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Stationarity conditions 

Primal canonical form:

fk y
k
(CR)( ) = yk(CR) gk y

k
(CR)( )

For example:

∇Qk y
k
(CR)( ) = gk y

k
(CR)( )=>



Stationarity conditions 

Dual canonical form:



Stationarity conditions 



Stationarity conditions 



Stationarity conditions 

Q̂k ak
(CR)( ) = ak(CR)

ak
(CR) ∈ R



Stationarity conditions 

Primal reduced form:



Stationarity conditions 

Dual reduced form:



Stationarity conditions 

Conditions:

Primal:

Dual:



Stationarity conditions 

Q̂k ak
(CR)( ) = ak(CR)

ak
(CR) ∈ R

R̂k bk
(CR)( ) = 0

−1≤ bk
(CR) ≤1
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Contribution: identified isomorphism between a class of 
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Stationarity conditions:
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Conservation: the bridge 

Isomorphic conservation principles:

(Sylvester’s Law of Inertia) 
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General strategy in linking structures to conditions

Determine a transformation M, which when 
applied to stationarity conditions, results in: 

1.  Orthogonal G 
2.   Contractive from dm to dD

a and b variables 

c and d variables 
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c 
a=f(y) 

b=g(y) 

d 

c 
b=g(y) 

a=f(y) 



Conservation: the bridge 

2.   Contractive from dm to dD

d 

c 
a=f(y) 

b=g(y) 

d 

c 
b=g(y) 

a=f(y) 

fk yk( ) = y k gk yk( ) !Qk yk( ) = gk yk( )=>

For example (contractive from dm to cm):



Conservation: the bridge 
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Conservation: the bridge 

2.   Contractive from dm to dD

=>η ≤ ""Qk ak( ) ≤ 1
η

0 <η <1 η ≤ "gk ak( ) ≤ 1
η

For example (contractive from dm to cm):



Conservation: the bridge 

2.   Contractive from dm to dD

=>η ≤ ""Qk ak( ) ≤ 1
η

!ck dk( ) ≤ 1−η
1+η

d 

c 
a=f(y) 

b=g(y) 

d 

c 
b=g(y) 

a=f(y) 

For example (contractive from dm to cm):

0 <η <1



Conservation: the bridge 

cℓ
(i) = aℓ

(i)

dℓ
(i) = aℓ

(i) + bℓ
(i)

cℓ
(o) = −aℓ

(o) + bℓ
(o)

dℓ
(o) = aℓ

(o)

A selection for M utilizing structure in Al

d 

c 
a=f(y) 

b=g(y) d 

c b=g(y) 

a=f(y) 

a1
(i) + a2

(i) = a3
(o)

Al:
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T. A. Baran and T. A. Lahlou, "Conservative Signal Processing 
Architectures For Asynchronous, Distributed Optimization Part I: General 
Framework," in Proc. of IEEE Global Conference on Signal and 
Information Processing (GlobalSIP), 2014. 



Examples 

T. A. Baran and T. A. Lahlou, "Conservative Signal Processing Architectures For Asynchronous, 
Distributed Optimization Part II: Example Systems," in Proc. of IEEE Global Conference on Signal 
and Information Processing (GlobalSIP), 2014. 
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A straightforward method for creating a class of 
signal processing structures for optimization 

1. Write an optimization problem.

2. Combine specific associated elements (e.g. from table).

3. Implement synchronously or asynchronously.

4. Read out.

Key results 



A strategy for determining additional signal-flow elements 

1. Write component of stationarity condition.

2. Identify conservation principle.

3. Transform to obtain contractive system with                      .

Key results 



When writing asynchronous optimization algorithms 

If primal and dual variables are being passed around,
may want to do something differently:

Identify stationarity conditions and conservation principle. 

Modify the algorithm to operate on a linear
superposition of primal and dual variables.

Comments 

Signal processing platforms keep evolving 

Think creatively about designing algorithms to use
commodity, high-performance platforms



Thank you! 


