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ABSTRACT

This paper is concerned with the inversion of implementations for

systems that may generally be nonlinear and time-varying. Specifi-

cally, techniques are presented for modifying an implementation of

a forward system, represented as an interconnection of subsystems,

in such a way that an implementation for the inverse system is ob-

tained. We focus on a class of modifications that leave subsystems

in the inverse system unchanged with respect to those in the for-

ward implementation. The techniques are therefore well-suited to

the design of matched pre-emphasis and de-emphasis filters, as ap-

proximations due to coefficient quantization in the forward system

are naturally matched in the inverse. In performing the inversion, an

explicit input-output characterization of the system is not required,

although the forward system must be known to be invertible. The

techniques are applied to the inversion of nonlinear and time-varying

systems, as well as to the problem of sparse matrix inversion.

Index Terms— Inverse systems, nonlinear filters, nonlinear sys-

tems, signal flow graphs.

1. INTRODUCTION

In the design of signal processing algorithms, it is often of interest

to implement the inverse of a pre-specified forward system. This

can occur, for example, within the context of system equalization,

where the forward system may consist of or be modeled by an inter-

connection of nonlinear and time-varying elements. In other appli-

cations where the forward and inverse systems are designed jointly,

as for example in applications employing matched pre-emphasis and

de-emphasis filters, an important design criterion is that the imple-

mentations of the forward and inverse systems are true inverses. It is

therefore desirable for approximations made in the implementation

of the forward system to be naturally accounted for in the implemen-

tation of its inverse.

This paper is concerned with the design of implementations for

inverse systems where an implementation of an invertible, generally

nonlinear and time-varying forward system has been specified. We

specifically focus on techniques for finding implementations of in-

verse systems that leave certain of the subsystems unchanged with

respect to the forward system. As such, the methods developed in

this paper are concerned not with the modification of subsystems,

but rather with modifying the way in which they are interconnected.

The presented techniques do not require an input-output characteri-
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zation of the forward system, although the system must be known to

be invertible.

We proceed by introducing a form of system representation

wherein a system is regarded as a set of subsystems coupled to a

linear interconnection. We then present a necessary and sufficient

condition under which an alternative interconnection exists such

that the resulting overall system is inverted. We make use of the

condition in arriving at a graph-based theorem pertinent to inter-

connections implemented as a specific class of signal flow graphs,

and the theorem is applied to the inversion of generally nonlinear

and time-varying systems. In inverting systems having intercon-

nections within this class, a forward interconnection composed of

unity branch gains implies that the inverse interconnection will be

composed of unity branch gains as well, thereby ensuring that any

approximations made in the forward system, e.g. coefficient quan-

tization, affect only the subsystems, resulting in an inverse system

that is naturally matched to the forward system even in the presence

of such approximations. The discussion is focused on discrete-time

systems involving linear interconnections that are memoryless and

time-invariant, as many of the key issues carry over to arbitrary

linear interconnections and continuous-time systems.

2. SYSTEM REPRESENTATION

The inversion techniques presented in this paper are facilitated by a

form of system representation that takes the behavioral viewpoint,

discussed in detail in [1]. We discuss the general problem of system

inversion from a behavioral perspective, and we present a form of

system representation that will lay the groundwork for development

of the presented techniques.

2.1. Inversion from a behavioral perspective

There are potentially many different notions of inversion that can

be used in developing techniques for inverting systems. Some are

discussed in, e.g., [2, 3, 4]. The specific concept of inversion that

forms the basis for this paper is related to the idea that a system can

be viewed as a map that is representative of constraints between sets

of input and output signals, as in [1]. Referring to the forward and

inverse systems in Fig. 1, a forward system M may be regarded as a

map from the set of input signals {c[n]} in its domain to the set of

output signals {d[n]} in its range. For the purpose of this paper, we

will focus on single-input, single-output systems that may be linear

or nonlinear, time-invariant or time-varying, and which may or may

not contain memory.

We adopt the convention that “the behavior” of a system refers

to the entire collection of input-output signal pairs consistent with



Fig. 1. A system and its inverse.

the map M . Formally, we represent the behavior as a set S such that

»

c[n]
d[n]

–

∈ S, (1)

where c[n] and d[n] are signals at the terminal branches connected

to the system.

Referring again to Fig. 1, we regard a system M as invertible if

it implements a bijective map from {c[n]} to {d[n]}, i.e. if M is a

one-to-one and onto map from the set of signals c[n] composing the

domain over which the system is defined to the set of signals d[n]
composing the range over which the system is defined. The inverse

system M−1 in turn implements the inverse map from the set {d[n]}
to {c[n]}, or alternatively from {c′[n]} to {d′[n]}. We conclude that

every input-output signal pair corresponding to an invertible system

M also corresponds to its inverse M−1, in the sense that

»

c[n]
M(c[n])

–

∈ S ⇔

»

M−1(c′[n])
c′[n]

–

∈ S ′, (2)

and we write S = S ′. An invertible system realized as a map M
from {c[n]} to {d[n]} therefore has the same behavior as its inverse

M−1.

2.2. Interconnective system representation

The key emphasis of the paper is on methods for generating imple-

mentations of inverse systems from implementations of forward sys-

tems, where identical subsystems are used in both. The techniques

presented for system inversion therefore focus not on the modifica-

tion of subsystems but rather on manipulating the way in which they

are connected. As such, we discuss a form of system representation

that we refer to as interconnective and that is designed to separate the

behaviors of the subsystems from the relationships that couple them

together. In particular, we view a system as having two parts: con-

stitutive relations, e.g. a set of possibly nonlinear and time-varying

subsystems that are allowed to have memory, and a linear, time-

invariant, memoryless interconnecting system to which the subsys-

tems and overall system input and output are connected.1 As was

mentioned previously, the conditions of memorylessness and time-

invariance are introduced to focus the scope of the discussion, and

many of the subsequent results generalize naturally to systems in-

volving arbitrary linear interconnections. The interconnective form

of system representation is depicted in Fig. 2. As the interconnec-

tion is time-invariant and memoryless, we have dropped the explicit

dependence on n in writing the terminal variables.

We are concerned with describing the behavior of the consti-

tutive relations and the behavior of the interconnection first as un-

coupled systems, with the intersection of their behaviors being that

of the overall system when the two are coupled together. We have

1Willems mentions essentially this representation in his work on dissipa-
tive systems, e.g. in [5]. It forms the cornerstone of various arguments in this
paper, and as such we feel that it is deserving of the special designation.

Fig. 2. A signal processing system in an interconnective representa-

tion.

specified that the interconnection is linear, and its behavior W is

consequently a vector space.

From an input-output perspective, the interconnection can

be represented as a matrix multiplication that maps from the

set of vectors of interconnection input terminal variables c =
[c0, · · · , cNi−1]

T to the set of vectors of interconnection output

terminal variables d = [d0, · · · , dNo−1]
T , where Ni and No de-

note the number of respective input and output terminal branches

directed to and from the interconnection in the uncoupled represen-

tation. That is, the interconnection is represented by an No × Ni

matrix L of coefficients where

d = Lc. (3)

In discussing the behavior of the interconnection, we are in-

terested in the set of all possible values taken on by a vector x =
[x0, · · · , xN−1]

T that contains the N = Ni + No interconnection

terminal variables. Referring again to Fig. 2, elements of x will gen-

erally correspond to both inputs and outputs, and we introduce a

permutation matrix P that encodes the correspondence between c, d

and x:

x = P

»

c

d

–

. (4)

A map from the vector of interconnection input variables c to the

vector containing the entire set of interconnection terminal variables

x may be obtained by combining Eqns. 3-4, resulting in

x = P

»

INi

L

–

c, (5)

where INi
is the Ni × Ni identity matrix. Consequently the set of

allowable vectors x, i.e. the behavior of the interconnection when

uncoupled from the constitutive relations, is the vector space

W = range



P

»

INi

L

–ff

. (6)

3. INVERSION TECHNIQUES

Drawing upon the interconnective form of representation, we de-

velop techniques for system inversion that leave the subsystems im-

plementing the constitutive relations unchanged. The general ap-

proach is to begin with an invertible system in this representation,



Fig. 3. Illustration of the interconnective approach to system inver-

sion. (a) Forward (CF) system. (b) Inverse (CI) system obtained by

replacing the LIF in the forward system with an LII.

whose input c0 = x0 and output d0 = x1 are included in the vector

of interconnection terminal variables x. This system, referred to as

the coupled forward system (CF), is regarded as a map M from x0

to x1. The corresponding uncoupled interconnection is referred to

as the linear interconnection for the forward system (LIF).

The goal in inverting the system is to determine an alternative

interconnection that has the same behavior as the LIF but that has

c′0 = x′

1 as an input and d′

0 = x′

0 as an output, with the directions

of all other interconnection terminal branches remaining unchanged.

The realization of this interconnection is referred to as the linear

interconnection for the inverse system (LII). The coupled system in-

volving the constitutive relations from the CF, coupled to the LII, is

referred to as the coupled inverse system (CI).

The CF implements a map from c0 = x0 to d0 = x1, and the CI

implements a map from c′0 = x′

1 to d′

0 = x′

0. As the behavior of the

LII is equivalent to the behavior of the LIF, the behavior of the CI

is equivalent to that of the CF. The CI consequently implements the

map M−1 that is the inverse of the map M implemented by the CF,

and it does so without requiring inversion of any of the subsystems

implementing the constitutive relations. The strategy for inversion

additionally does not require that the input-output map M is known

explicitly, although M must be known to be invertible. The general

approach is summarized in Fig. 3.

3.1. Equivalence of interconnections

One consideration in employing the previously-mentioned approach

pertains to the question of whether an appropriate LII exists. We

address this issue, presenting a necessary and sufficient condition

for the existence of an LII given an LIF.

Theorem 1. Given an LIF where x0 = c0 is an interconnection

input and x1 = d0 is an interconnection output, an LII having the

same behavior and having x′

1 = c′0 as an input and x′

0 = d′

0 as

an output exists if and only if the gain in the LIF from c0 to d0 is

nonzero, i.e. if and only if the LIF matrix L has the property

L1,1 6= 0. (7)

Proof. We first show that Eq. 7 is a necessary condition for the ex-

istence of an appropriate LII. If L1,1 = 0, i.e. if the gain from c0

to d0 is zero, the map realized by the LIF from c0 to d0 is many-to-

one. Consequently there is no map from c′0 to d′

0 that has the same

behavior, and no appropriate LII exists.

We now show that Eq. 7 is a sufficient condition, i.e. that L1,1 6=
0 implies that there exists an L′ corresponding to an LII having the

same behavior as the LIF. Adopting the convention established pre-

viously, we denote the number of inputs to the LIF and LII as Ni and

the number of outputs from the LIF and LII as No. The behavior W
of the LIF is given by Eq. 6. Similarly, the behavior W ′ of the LII

can be written

W ′ = range



P ′

»

INi

L′

–ff

, (8)

where P ′ is the permutation matrix encoding the correspondence be-

tween the vector x′ containing the entire set of LII terminal variables

and the vectors c′ and d′ respectively containing the LII input and

output terminal variables.

We proceed by showing that if L1,1 6= 0, there exists a full-rank

Ni × Ni matrix A such that

P ′

»

INi

L′

–

= P

»

INi

L

–

A, (9)

where L′ is the resulting LII matrix. Combining Eqns. 8-9 and 6, we

conclude that the existence of such an A would result in equivalence

of the LIF and LII behaviors, i.e.

W ′ = range



P

»

INi

L

–

A

ff

= range



P

»

INi

L

–ff

= W. (10)

It remains to be shown that there exists a full-rank Ni ×Ni ma-

trix A as is required for Eq. 10 to hold. We begin by noting that

P ′−1P is itself a permutation matrix that as a matrix multiplication

swaps elements 1 and (Ni + 1) of a vector, following from the re-

quirement that c′0 = d0 and d′

0 = c0. We consequently show that a

full-rank Ni × Ni matrix A exists such that the following equation,

obtained by multiplying both sides of Eq. 9 by P ′−1, is satisfied:

»

INi

L′

–

=

2

6

6

6

6

6

6

6

6

6

6

6

6

4

L1,1 L1,2 · · · L1,Ni

0 1
...

. . .

0 1
1 0 · · · 0

L2,1 L2.2 · · · L2,Ni

...
...

. . .
...

LNo,1 LNo,2 · · · LNo,Ni

3

7

7

7

7

7

7

7

7

7

7

7

7

5

A. (11)

Under the condition that L1,1 6= 0, standard column reduction

operations can be used to transform the upper partition in the matrix

on the right hand side of Eq. 11 to INi
as desired. A is selected

to encode these operations, and since the standard column reduction

operations are invertible, A is full-rank. Consequently Eq. 10 holds,

completing the proof.



(a)

(b)

Fig. 4. Elements pertinent to Theorem 2 composing (a) the men-

tioned path from c0 to d0 and (b) the path from c′0 to d′

0.

3.2. Obtaining an LII flow graph from an LIF

With the conditions under which a desired LII exists now in place,

we discuss the issue of generating a signal flow graph for an LII

given a signal flow graph for an LIF. The entries of the LIF intercon-

nection matrix L may generally take on any scalar value, and as such

the branches in a flow graph implementation for the LIF may con-

tain non-unity branch gains. The following theorem, which applies

to a class of LIF flow graphs that occur in common signal process-

ing structures, presents a method for generating a flow graph for the

LII, drawing a correspondence between the branch gains in the two

implementations.

Theorem 2. The theorem applies to a signal flow graph for an LIF

consisting of a single path from the input c0 = x0 to the output

d0 = x1 where the interconnection inputs c1, . . . , cNi−1 form in-

cident branches directed toward the path and the interconnection

outputs d1, . . . , dN0−1 form incident branches directed away from

the path, and where each branch gain along the path is nonzero.

Given such a flow graph for an LIF, a flow graph for the LII can be

realized by reversing the direction of all of the branches forming the

path, inverting each of the branch gains along the path, and negating

any incident branches that are directed toward the path, resulting in

a path from c′0 = x′

1 to d′

0 = x′

0. The directions of the incident

branches remain unchanged.

Proof. We begin by noting that the condition for the existence of

an LII as stated in Theorem 1 is satisfied by the requirement that

all gains along the path from c0 to d0 are nonzero. One strategy in

completing the proof involves representing the signal flow graph in

terms of its matrix L as in Eq. 3 and showing that the prescribed

operations result in a new matrix L′ corresponding to an intercon-

nection that has the same behavior. As the proof becomes somewhat

lengthy using this approach, we instead opt to present the proof of

Theorem 2 using a behavioral argument.

Consider a flow graph of the mentioned form that implements

the LIF. The process of reversing the branches along the path from

c0 to d0 modifies the interconnection to be in the input-output con-

figuration desired of the LII. It remains to be shown that the resulting

flow graph has the same behavior as that of the LIF. In illustrating

this, we view the signal flow graph as being composed of the ele-

ments indicated in Fig. 4(a), coupled together by equality constraints

between the branch variables. Fig. 4(b) illustrates the corresponding

elements in the reversed path. Each of the elements in Fig. 4(b) con-

strains its terminal variables in the same way as the corresponding

element in Fig. 4(a), and the elements in each pair consequently have

the same behavior. The connected elements forming the LII there-

fore have the same behavior as the connected elements forming the

LIF.

Given an LIF flow graph of the form required by Theorem 2

whose branch gains along the mentioned path are unity, the corre-

sponding gains in the LII graph will be unity as well. Approxima-

tions such as coefficient quantization that are made in implementing

the CF will therefore be manifest only in the CF constitutive rela-

tions, which are identical to those in the CI. The CF and CI systems

will in this case be naturally matched, even in the presence of such

approximations.

4. APPLICATIONS

In this section, we apply Theorem 2 in the development of inver-

sion techniques that can be directly applied to systems represented

as signal flow graphs. The methods are illustrated through examples

involving known inverse systems and are used to arrive at an efficient

algorithm for computing inverse maps of linear operators for which

the forward map, represented as a matrix multiplication, is sparse.

4.1. A graph-based inversion technique

Direct application of Theorem 2 to a system in interconnective form

may result in delay-free loops that pass through the constitutive re-

lations, complicating implementation of the inverse system. While

the technique in, e.g., [6] may be used in this situation, it would be

desirable to avoid delay-free loops altogether. We present a corollary

to Theorem 2 that addresses this concern, facilitating the inversion

of systems realized as signal flow graphs, without requiring repre-

sentation in an interconnective form.

Corollary 1. The corollary applies to a system realized as an in-

vertible single-input, single-output signal flow graph having a lin-

ear, time-invariant, memoryless path from the input c0 to the output

d0 that is the only (linear or nonlinear) memoryless path from c0 to

d0, and along which each branch gain is nonzero. Given such a flow

graph, a flow graph for the inverse system can be realized by revers-

ing the direction of all of the branches forming the path, inverting

each of the branch gains along the path, and negating any incident

branches that are directed toward the path. The inverse system will

not contain any delay-free loops.

Proof. Viewing the flow graph as being in an interconnective form,

where the LIF contains the mentioned path exclusively, and where

the remainder of the flow graph comprises the constitutive relations,

the proof follows from Theorem 2. The indicated modifications re-

sult in an LII having the same behavior as the LIF and also having

the desired input-output configuration. The CI is therefore the in-

verse of the CF. The presence of a single memoryless path in a sig-

nal flow graph implies that reversal of the path will not result in the

introduction of any delay-free loops.

4.2. Inversion of time-varying linear filters

Fig. 5 illustrates the application of Corollary 1 in the inversion of

a time-varying linear filter, realized in a direct form structure. The

values for the time-varying coefficients bk[n] are assumed to result

in a map from c[n] to d[n] that is invertible in the sense discussed in

Section 2.1. Note that this does not imply that the inverse system will

necessarily be causally invertible. For example in the time-invariant

case where the coefficients bk[n] = bk are constants, the values of

bk can be chosen so that the forward system is not minimum phase

but is still invertible, although the stable inverse will be noncausal.

Alternatively, a causal implementation of the inverse system will be

unstable.

Another consideration regarding the implementation of the in-

verse system relates to the issue of choosing initial conditions. As



Fig. 5. A time-varying linear filter (a) and its inverse (b), determined

using Corollary 1. The delay free path pertinent to Corollary 1 has

been identified in the forward flow graph (a).

an illustrative example, consider the system in Fig. 5(a) for K = 1
and b1[n] = −1/2. Under these constraints, the inverse system in

Fig. 5(b) relates c′[n] and d′[n] according to the following equation:

0 = d′[n] −
1

2
d′[d − 1] − c′[n]. (12)

Having specified only an input signal c′[n], there may be multiple

output signals d′[n] that satisfy Equation 12. For example, both

d′[n] = (1/2)nu[n] and d′[n] = −(1/2)nu[−n − 1] satisfy Equa-

tion 12 given c′[n] = δ[n]. As we assumed that the forward system

in Fig. 5(a) implements a one-to-one and onto map, a single input

signal c′[n] ought to correspond to a unique output d′[n] in the in-

verse system. The specific choice of output will therefore depend

on the initial conditions in an implementation of the inverse sys-

tem. The key point is that although initial conditions are naturally

encoded in the behavior of a system, it is important as a matter of

implementation to match the initial conditions in the inverse system

to those of the forward system.

As another example illustrating the application of Corollary 1 in

inverting a known structure, Fig. 6 depicts its use in the inversion of a

time-varying FIR lattice filter. Note that the topology of the resulting

inverse system is consistent with the canonical IIR lattice structure

as described in, e.g., [7]. Under the assumption that the generally

time-varying reflection coefficients kp[n] take on values that result

in an invertible FIR structure in the sense discussed in Section 2.1,

the time-varying inverse structure depicted in Fig. 6(b) will be the

exact inverse of the FIR structure in Fig. 6(a).

4.3. Sparse matrix inversion

A causal implementation of the system in Fig. 5 can be used to ef-

ficiently realize matrix multiplications involving inverses of lower-

triangular matrices having few nonzero entries, i.e. that are sparse.

We are specifically concerned with matrices having the following

banded structure:

Q =

2

6

6

6

6

6

6

6

6

6

6

6

4

1
b1[0] 1

... b1[1]
. . .

bK [0]
...

. . .

bK [1]
. . .

bK [J − K] · · · b1[J − 1] 1

3

7

7

7

7

7

7

7

7

7

7

7

5

.

(13)

The system in Fig. 5(a) may be regarded as an implementation of

the matrix multiplication r = Qp where the vectors p and r contain

length-(J + 1) input and output time series c[n] and d[n], i.e. p =
[c[0], · · · , c[J ]]T and r = [d[0], · · · , d[J ]]T .

An appealing property of sparse matrices is that matrix mul-

tiplication can be performed efficiently due to the relatively few

number of nonzero matrix entries. In Fig. 5(a) this translates to

multiplications by 0 for certain of the time-varying coefficients at

various times, which need not be computed. However, the num-

ber of nonzero entries in a sparse matrix may be significantly less

than the number of nonzero entries in its inverse, and consequently

the inverse map, implemented as a matrix multiplication, may incur

greater computational cost. Alternatively, realizing the inverse map

using the system in Fig. 5(b) results in a recursive implementation

requiring the same number of multiplications as in the implemen-

tation of the forward map, as the time-varying coefficients in the

inverse implementation are identical to those of the forward imple-

mentation.

In addition to a potential reduction in computational cost due to

implementation of the inverse map as in Fig. 5(b), there is an addi-

tional efficiency in arriving at the implementation of M−1, in that

the matrix inverse Q−1 need not be computed explicitly. It should

also be noted that care must be taken in implementing the inverse

system, as applying Corollary 1 to a map between sets of truncated

signals implies that the inverse system implements the inverse map

only between those sets, having unspecified behavior for longer sig-

nals.

4.4. Generalization to nonlinear interconnections

In applying Corollary 1, it may be possible that a single delay-free

path from the input to the output exists but that one or more of the

branches along the path is nonlinear. It may additionally be of in-

terest to invert systems having interconnections that contain mixers

(modulators) or other nonlinear junctions. In this section, we gen-

eralize the graph-based inversion method of Corollary 1 to apply

to certain nonlinear, memoryless interconnections. Again a single

memoryless path from the input to the output is required, as a matter

of avoiding delay-free loops. Along this path, any non-unity branch

functions must be inverted, and for incident branches directed to-

ward multiplicative junctions, the multiplicative inverse of the signal

on the incident branch must be taken.

Corollary 2. The corollary applies to a system realized as an in-

vertible single-input, single-output signal flow graph having a mem-

oryless path from the input c0 to the output d0 that is the only mem-

oryless path from c0 to d0, and where the path is composed of the

elements in Fig. 7(a) such that each of the branch functions along

the path is invertible. Given such a flow graph, a flow graph for the

inverse system can be realized by substituting the appropriate corre-

sponding element in Fig. 7(b) along the mentioned path. The inverse

system will not contain any delay-free loops.

Proof. We follow the same line of reasoning as in the proof of Corol-

lary 1, which draws upon Theorem 2, but we allow for a more gen-

eral set of elements, listed in Fig. 7, composing the flow graph. Re-

ferring to this figure, the elements in each pair have the same behav-

ior, and consequently the mentioned steps associated with the rever-

sal of the path from c0 to d0 result in an overall flow graph that has

the same behavior as the original and thus implements the inverse

map.



Fig. 6. A time-varying FIR lattice filter (a) and its inverse (b), determined using Corollary 1. The delay free path pertinent to Corollary 1 has

been identified in the forward flow graph (a).

Fig. 7. Elements pertinent to Corollary 2 composing (a) the men-

tioned path from c0 to d0 and (b) the corresponding path in the in-

verse system.

Fig. 8. A nonlinear flow graph (a) and its inverse (b), determined

using Corollary 2. The delay free path pertinent to Corollary 2 has

been identified in the forward flow graph (a).

4.5. Nonlinear system inversion

Corollary 2 may be used to invert nonlinear systems or system mod-

els. Fig. 8 illustrates its use with a known example involving the

system representation discussed in [8]. In that article, the forward

system is described by an equation of the form

d[n] = g(c[n])h(c[n− 1], d[n− 1])+ f(c[n− 1], d[n− 1]), (14)

where g(·), h(·, ·) and f(·, ·) are causal, nonlinear operators.

Fig. 8(a) depicts a realization of Eq. 14 as a nonlinear signal flow

graph. Applying Corollary 2 results in the signal flow graph for the

inverse system that is depicted in Fig. 8(b). From this, we write

d′[n] = g−1

„

c′[n] − f(d′[n − 1], c′[n − 1]

h(d′[n − 1], c′[n − 1])

«

, (15)

consistent with the main result of Theorem 1 in [8]. The presented

approach applies to higher-order nonlinear models as well.

5. REFERENCES

[1] J.C. Willems, “The behavioral approach to open and intercon-

nected systems,” IEEE Control Systems Magazine, vol. 27, no.

6, pp. 46–99, 2007.

[2] R.M. Hirschorn, “Invertibility of multivariable nonlinear control

systems,” IEEE Trans. Autom. Control, vol. 24, pp. 855–865,

1979.

[3] R.M. Hirschorn, “Invertibility of nonlinear control systems,”

SIAM Journal on Control and Optimization, vol. 17, pp. 289,

1979.

[4] A. Willsky, “On the invertibility of linear systems,” Automatic

Control, IEEE Transactions on, vol. 19, no. 3, pp. 272–274,

1974.

[5] J.C. Willems, “Dissipative dynamical systems part I: General

theory,” Archive for Rational Mechanics and Analysis, vol. 45,

no. 5, pp. 321–351, 1972.

[6] A. Härmä, “Implementation of recursive filters having delay

free loops,” in IEEE Proc. Int. Conf. Acoust., Speech and Signal

Process., 1998, pp. 1261–1264.

[7] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Pro-

cessing, Prentice-Hall, Inc., Englewood Cliffs, NJ, third edition,

2010.

[8] A. Carini, G.L. Sicuranza, and V.J. Mathews, “On the inversion

of certain nonlinear systems,” IEEE Signal Processing Letters,

vol. 4, no. 12, pp. 334–336, 1997.


